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ABSTRACT

The performance of text dependent, short utterance
speaker verification systems degrades significantly with
channel and background artifacts. We investigate max-
imum likelihood and adaptive techniques to compen-
sate for a stationary channel and noise. Maximum like-
lihood channel and noise compensation was introduced
by Cox and Bridle in 1989, and has been shown to be
effective in many other speech applications. For adap-
tive estimation, a Bussgang like algorithm is developed
which is more suitable for real-time implementation.
These techniques are evaluated on a speaker verifica-
tion system that uses the nearest neighbor metric. Our
results show that for telephone speech with channel dif-
ferences, channel compensation can provide substantial
performance improvement. For un-cooperative speak-
ers, background compensation resulted in a 35% im-
provement.

1. INTRODUCTION

This paper addresses the problem of short utterance,
text dependent speaker verification over telephone. It
is assumed that performance degradation is due to a
stationary channel and/or background artifact. This is
a reasonable assumption since the utterance durations
considered here are on the order of two seconds. This
paper examine solutions to this problem using maxi-
mum likelihood and adaptive techniques. Maximum
likelihood channel and background adaptation was in-
troduced by Cox and Briddle [2], and has been shown to
be effective in unsupervised microphone adaptation for
speech recognition [7], keyword spotting [10], speech
recognition over telephone [9], and text independent
speaker identification [11]. However, maximum likeli-
hood methods are iterative and difficult to implement
in real time. Therefore, adaptive techniques are also ex-
plored. In particular, Bussgang algorithms have been
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applied successfully to communication [1] and seismic
signal processing [4]. Both the maximum likelihood
and the adaptive techniques require a statistical model
for speaker independent speech. The model used here
is a speaker independent HMM trained from the first 50
speakers of the YOHO corpus [5]. In Sec. 2 we describe
the speaker verification system, as well as our model for
channel/noise corruption of the data. Sec. 3 describes
the maximum likelihood estimation of the channel and
noise corruption vectors. Sec. 4 describes the adaptive
technique applied to this problem. Sec.’s 5 and 6 dis-
cuss the database used and the experimental results.
Sec. 7 contains our conclusions.

2. DESCRIPTION OF THE VERIFIER

The preprocessing for the speaker verification system
consists of a mel-scaled filterbank followed by an esti-
mate of the Olano observations given by [§],

Oit] = (1)

p; 1s the spectral power from the ¢-th component of the
filterbank, and O;{t] is the i-th component of the Olano
observation at time frame ¢t.

The nearest neighbor speaker verification algorithm
used here is based on Higgin’s system [6]. Let T[], ¢ =
1...Nirain be frames of speech from speaker j, and U3},
it = 1...Niest be frames of a test utterance. Both the
training and test utterances are segmented into speech
classes via Viterbi segmentation using an HMM. The
nodes of the HMM define the classes. The forward
score between the test utterance and speaker j is
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where d(-,-) is the squared Euclidean distance opera-
tor, and £(i,k) is the event that frame k of the test
utterance (U) and frame i of T; have the same HMM
node class. The backward score is

1 Nirain

Ntrain

B; min __d(T;1i], U[K])

i {k:E(i,k)}

The distance score between the test utterance and speaker

j training utterance is S; = F; + B; and the speaker
identity is chosen according to

j = argminS;
j

Other details regarding scores normalization, frames
selection, and so forth are discussed in [6].!

Our model for stationary noise and channel corrup-
tion at the t-th time window is as follows:

Xi(w) = H(W)Si(w) + N(v) (2)

where X;(-) is the acquired speech, S;(-) is the uncor-
rupted speech, H(-) and N(-) are stationary channel
and noise artifacts. Let

¢; =< HW), Fi(w) >%, and n; =< N(w), F;(w) >?
where < -,- > is the inner product operator, and Fj(w)
is the filter that corresponds to the ¢ — th component
of the filterbank. Our model for the corrupted Olano
observation is

cipi[t] +
> Veipilt] +n;
Other details: Sampling rate is 8kHz. Frame rate is

50Hz. Filterbank window size is 32msec. 14 filters per
frame.

Oift] =

3)

3. MAXIMUM LIKELIHOOD ESTIMATION

Our goal is to estimate the channel and noise compen-
sation vectors, ¢;’s and n;’s, from the corrupted Olano
observations of Eq. 3 via maximum likelihood; i.e., find

{¢, 2} = argmax f(Ole, n) 4)

where O is the set of Olano observations for all times
and components, and {¢,n} are the channel and noise
compensation vectors (¢;’s and n;’s). For this short

1For scores normalization, Higgins used test samples to esti-
mate normalization factors [6]. Here, we estimate normalization
factors from training data and apply them to the test speech
without further modification.

utterance text dependent task,.the probabilistic model
we use is an HMM, and ¢, n is estimated using Gener-
alized Expectation Maximization (GEM) [3].2 Define
the EM functional

Qei¢) = p(al0,¢)f(q,0lc) (5)
q

where ¢’ is the estimated channel at the previous iter-
ation, q, the “hidden” variable, is a sequence of states
in the Baum—Welsch algorithm. Ignoring the initial
probabilities and the transition probabilities, we have

T
£(0,4le,n) = [] F(Qllle, m, ¢2)

where Q[t] is the vector of Olano components at time
t, q; is the HMM state at time ¢ corresponding to q,
and the observation probability is Gaussian with a di-
agonal covariance matrix. Under the Gaussian model,
the above equations become

14

Qed)=C+CY P Y = (Ol = 1)’ (6)

t,s i=1 ¢t

where 7 is an index to the components of the Olano ob-
servation, o; is the (i,7)-th element of the global diag-
onal covariance matrix, p,; is the Gaussian mean for
HMM state s component ¢, C; and C; are constants,
and P, , is p(g: = s|0,¢’), computed using the forward
backward algorithm. Substituting the distorted Olano
observations of Eq. 3 for the observation in Eq. 6, we
obtain the following gradients for channel and noise
updates:

)

-
o Qi) ox

1 s
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5,4

Since O is compensated at each iteration, we used the
simplifying assumption that n; & 0 and ¢; ~ 1 in the
above. For channel compensation, we again assume
that n; &~ 0 at each iteration and simplify Eq. 3 to

2The GEM algorithm modifies the EM algorithm by using
gradient descent instead of maximum likelihood in the M-step
(of the EM algorithm).

338



where p and ¢ are the squares of their corresponding
components in Eq. 3 and solve

2.Q(E:8)
L5, Pos (= S (Oult] = k) fi 2 s0?
+ (Oi [t] - ,ﬂt,i) fs i (Z, ﬁ?,jo']?))
(8)
where 5
Orlt] = Oftl/of
lls,k = ;Us,k/a'%

The validity of the above technique has been verified
from synthetic data experiments.

4. ADAPTIVE ESTIMATION

The adaptive procedure implemented for this problem
was motived by the Bussgang algorithm [1]. The up-
date equation is

, Y;
Ci—Ci-f'(S(?i—W) (9)

where ¢} is the current channel estimate, é is the gradi-
ent descent parameter, Y is the channel compensated
Olano input (via Eq. 3), ¥; is the MMSE estimate of
the uncorrupted speech, and W, defined below, is ap-
proximatedly 1. A real-time approximation for Y; is
determined during recognition by using node probabil-
ities (P(n)’s) computed during recognition, and then
applying the heuristic that probabilities below 0.2 are
discarded.? Le.,

L)

where u, is the mean vector for node n, P(n) is de-
scribed above, and all summations take place over the
event P(n) > 0.2. Win Eq. 9is 5 P(n) over all P(n)’s
greater than 0.2. The deconvolved speech vectors after
a few milliseconds are used for deconvolution.

5. DESCRIPTION OF THE CNORM AND
DEMO_RV1 DATABASE

The vocabulary and grammar used for this text de-
pendent task is that of the “combination lock” phrases
consisting of two pairs of numbers. A example phrase is
46-79, pronounced “forty six seventy nine.” Enrollment
samples from the first 50 speakers in the narrowband

3 Although we did not perform an exhaustive experimental
search for the optimal threshold value, our experiments indicate
that not using a threshold (i.e. a threshold of 0} did not work.
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Table 1: Supervised verification results, in terms of
EER (equal error rate) of the ROC curve, for both
tasks. Results are shown for baseline, max. likelihood
(ML) channel deconvolution and background compen-
sation.

CNORM DEMO_RVI

baseline 21.7% 4.6%
ML chan decon 3.4% 3.3%
ML bkg comp  7.0% 3.0%

YOHO database [5]* are used to train a speaker inde-
pendent, Gaussian mixture observation HMM. The vo-
cabulary of the test database is further limited to 8 dig-
its “forty”, “four”, “sixty”, “six”, “seventy”, “seven”,
“ninety” and “nine”.

The first test database is the “CNORM” database.
It consists of 12 speakers speaking over 4 phones with
different channel characteristics. 8 of the speakers had
2 test sessions each on 2 different, randomly selected
phones with 2 phrases per test session. These 8 speak-
ers are adjuncts; i.e. they have no enrollment sessions,
and are used to generate false alarms only. The other
4 speakers had 2 enrollment and 4 test sessions on each
of the 4 phones, with 4 phrases per enrollment session.
When testing speaker A from phone X, enrollment ses-
sions for speaker A phone X are not used, but other
speakers’ phone X enrollments are used. Thus, success-
ful verification requires overcoming channel differences.

The second database, dubbed “DEMO_RV1,” con-
sists of 23 speakers calling from different phones. Sev-
eral speakers in this database knew each other, and
were encouraged to disguise their voices. They were
given a pay bonus each time they successfully fooled
the verifier to accept their voice for one of their co—
workers. Each of the 23 speakers had 2 enrollment ses-
sions of 4 phrases each, spoken normally and acquired
from the same phone. There is an average of 17 test
session per speaker, ranging from a minimum of 1 test
session to a maximum of 153 test sessions.

6. EXPERIMENTAL RESULTS

The result of applying the above algorithm to the
CNORM and DEMO_RV1 database is shown in Tab. 1.
For the CNORM database, which is designed to test
channel artifacts, channel deconvolution decreased the

4The YOHO database consists of 106 males, 32 females, same
channel, 4 enrollment sessions per subject with 24 phrases per
session, 10 test sessions per subject with 4 phrases per test
session.



Table 2: Unsupervised verification results on the
CNORM task

baseline 23.3%

blind deconvolution 8.7%

adaptive (Bussgang-like) 4.7%

ML chan decon 3.6%

ML bkg subt 7.8%

EER from 21.7% to 3.4%. Background compensation
actually can have a significant effect on channel arti-
facts. As a result, for the CNORM database, back-
ground compensation improved the EER from 21.7%
to 7.0%.

In the DEMQO_RV1 database, it is not known which
of channel and/or noise is a more significant factor.
Neither channel nor background compensation provides
a good model for non—cooperative speakers. Here, chan-
nel deconvolution improved the EER only to 3.3% (from
a baseline of 4.6%), while background compensation
improved the EER to 3.0%.

Text independent techniques on CNORM are of in-
terest as they are indicative of performance expected
in a constrained text independent task. Also, in real
application, users may not be careful to repeat their
prompted phrases. The relevant text independent tech-
niques include conventional blind deconvolution (i.e.
channel /noise estimated via long term spectral aver-
ages) and the adaptive techniques described in Sec. 4.
Also, all the above text dependent techniques can be-
come text independent if one uses a loose grammar
instead of forced decoding to the target phrase. As
Tab. 2 shows, repeating the text dependent techniques
in the text independent mode results in only a slight
performance degradation. This is probably because the
recognition rate is high for this constrained grammar
task. Also, conventional blind deconvolution provides
fairly good performance in this situation (8.7%). Note
that the adaptive scheme provided 4.7% performance,
which is better than blind deconvolution but not at the
3.4% level achieved using maximum likelihood channel
deconvolution. We note, however, that the computa-
tional complexity of the adaptive method is similar to
that of the blind deconvolution, and is much smaller
than that of the maximum likelihood techniques.

7. DISCUSSIONS

The results here show that channel deconvolution
for short utterances text dependent speaker verification
can be addressed by maximum likelihood estimation of
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a stationary channel vector using a speaker indepen-
dent HMM as a statistical model. This result extends
to the text independent case. However, this might not
work as well in problem domains where the difficulty
is not necessarily restricted to the channel. Finally, we
also showed that an adaptive technique works better
than blind deconvolution in the text independent mode
of this task, although performances are not as good as
that provided by maximum likelihood. The adaptive
technique explored here is analogous to the Bussgang
algorithm for blind equalization, and is amenable to
real time implementation.
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