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ABSTRACT

Two novel channel robust methods are described for performing
text-independent speaker identification. The first technique mod-
els speaker’s voices stochastically via cepstra correlations rather
than by covariances in an effort to compensate for additive noise.
The second technique, which we term dynamic covariances, mod-
els speakers by covariances of deviations of cepstra from time
varying means rather than from constant means. Dynamic co-
variances may normalize for time varying channel effects, utter-
ance lengths and text. Experimental results are obtained on the
SPIDRE subset of the Switchboard corpus. Error rates as low as
2.2% are obtained using the new models.

1. Introduction

When test session channels differ from training channels, a vari-
ability in the data is introduced which makes the task of text-
independent speaker identification more difficult. (By speaker
identification we refer to the problem of chosing a speaker from a
list of possible speakers as the speaker of a given utterance. When
the text of an utterance is irrelevant to the identification proce-
dure, the identification is termed text-independent.) Most popular
techniques employ some form of mean removal to compensate
for channel differences. One such method is to model speakers’
voices by covariances of cepstra (Gish et ak: [1,2]), thereby mod-
eling by shape rather than by location. Additionally covariance
matrices of cepstra are invariant to linear time-invariant channel
effects. Some channel effects, for example additive noise, may,
however, not be linear time-invariant. Even after mean removal,
channel can be a significant source of error. In fact, on one
experiment using the Switchboard corpus, we found that using
covariance models, recognition accuracy decreased from 92% to
75% when test channels were present in training compared to
when they were not.

Two covariance estimation techniques for coping with chan-
nel effects are presented. The first new algorithm is based on
modeling speakers voices by correlations of cepstra rather than
by covariances in order to compensate for varying noise lev-
els. Additive noise reduces cepstral variance and so impacts on
covariance matrices. The second technique, which is based on
what we call dynamic covariances, attempts to compensate for
time varying channel artifacts. Covariances are computed from
deviations of cepstra from a time varying function. Dynamic
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covariances may also compensate for differences in the words
spoken between training and testing, though we have found that
dynamic covariances help little, if at all, when training and test
channels are matched. Both methods are extensions of the ro-
bust segmental algorithms of Gish et al. [1,2] which are briefly
reviewed below.

2. Background

The basic features used are mel-warped cepstra and difference
cepstra. For each segment of speech, the sample mean Z, and
sample covariance S of the cepstra as well as the sample covari-
ance S of difference cepstra are computed. For each of several
training sessions for each speaker, probability models for each
of the above statistics are constructed. The distributions of the
cepstra are assumed Gaussian in which case the mean statistic
T is Gaussian and the covariances S and S, have Wishart dis-
tributions. Let g and X' denote a model mean and covariance
respectively estimated in training. Then the log likelihood of the
mean of a test session Z is

1 - n -1,
L@ p, )=~ log|2en” B - 2@ - W' TT@E - mw), ()
and the log likelihood of S is
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(|A] and A’ denote the determinant and transpose of a matrix A,
respectively.) The formula for £(Sa; £ a), the difference cepstra
covariance log likelihood, is identical to Equation 2. The log like-
lihood of the mean of the difference cepstra depends only on the
endpoints of an utterance, is random and is not useful. The log
likelihoods of interest can be normalized by subtracting the mean
and dividing by the standard deviation of the log likelihoods gen-
erated over all speaker models, weighted and combined to form
new scores. Let MEAN, COV and DCOV denote the respective
normalized log likelihoods. The weighted combined scores then
take the form

a MEAN + 8 COV +~vDCOV. 3)

The normalization enables the combining of disparate scores. The
speaker associated with the model resulting in the maximum score
is identified. When test session channels are different from train-
ing, it is usually beneficial to remove the mean feature term by
setting a = 0. Otherwise identification may be based on channel
as much as on speaker.
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In order to combat contamination due to silence, noise or cross-
talk, test sessions are segmented into 1 second intervals so that
the best of muiltiple models from each speaker can be chosen
for each segment and so that offending segment scores can be
deemphasized or discarded. The segment scores are the log like-
lihoods of individual 1 second intervals and are combined using
robust scoring algorithms. Three such algorithms are reviewed.
The Sum score consists of each speaker’s best segment scores
summed. The TopMtoN%, is the sum of the top M% to N%
speaker’s ordered segment normalized scores. Segment scores are
normalized by subtracting other speaker’s scores from the same
segment. Segment scores are normalized so that no one segment
is weighted more than others and so that each speaker’s scores
will be combined from their individual best segments rather than
all speakers scores generated from the same segments. The Clip0
score is generated by summing each speaker’s positive normal-
ized segment scores. In effect, only segments where a speaker
scores higher than all other speakers are counted in the score.
Each robust score, for example Clip0, can be computed using
means, covariances or derivative cepstra covariances.

Since the models are so simple, namely one or a few co-
variances per utterance, and since scoring is performed via the
straightforward Equation 2, both training and testing are easily
performed in real time using off-the-shelf workstations. No ex-
pensive searching, clustering or iterative algorithms are required.

3. Baseline Experiments

All experiments are performed using the SPeaker IDentification
REsearch (SPIDRE) subset of the Switchboard corpus. The
reader is referred to [3] for more information about Switchboard.
The SPIDRE corpus consists of 45 speakers, 23 male and 22 fe-
male. Three 60 second training sessions were employed for each
speaker. Results are based on one 40 second test per speaker.
Each test contains approximately 30 seconds of speech from the
speaker to be identified along with silence, noises and crosstalk.
Handsets used in the test sessions were not encountered in train-
ing, hence the MEAN feature scores are not employed. Both
COV and equally weighted COV+DCOYV baseline results are pre-
sented in Table 1 for comparison with results in future sections.
Note that error percentages are based on relatively few tests and
that each incorrect identification results in a increase of 2.2% in
the error rate.

Percent Error | COV | COV + DCOV
Sum 24.4% 11.1%
Clip0 24.4% 17.8%
TopOto60% 24.4% 13.3%
Top0to80% 24.4% 11.1%
Topl0to80% | 26.7% 8.9%

Table 1. Baseline covariance method results.

4. Correlation Models

A possible source of channel distortion is added noise. When
noise is added to a signal, the energy of the signal goes up,
but the magnitudes of the cepstral vectors tend to decrease [4,5].
Variances are reduced when magnitudes are decreased. To nor-
malize for changes in cepstral variances due to added noise be-
tween training and testing, correlation matrices are substituted for
covariance matrices.

Recall that the covariance for a collection of samples {z;} is
given by the formula

1 w— '
s=;;(z.-—a<z.~—f). @)

The correlation matrix R is obtained by dividing each entry s;; of
S by s;s;, where s, is the standard deviation of the i** coordinate.
Equivalently, if D is the diagonal matrix with the same diagonal
entries as the covariance matrix S, then

R=D"'*sp-'/2, )

The variances of the cepstral coefficients-are normalized to one.

Two scoring algorithms using correlation matrices for identi-
fication are considered. The first technique assumes a Wishart
distribution on correlation matrices and again uses Equation 2
replacing test and model covariances by test and model correla-
tions, respectively. (The Wishart assumption is not unreasonable
as the correlation of a collection of vectors is the covariance of
the vectors scaled by their variances. Correlations can be thought
of as covariances in a transformed space.) We denote the log like-
lihood by WISH-R for Wishart correlation. Slight improvements
are obtained Experimentally. Compare Table 2 with Table 1.

Percent Error | WISH-R | WISH-R + DCOV
Sum 17.8% 11.1%
Clip0 17.8% 17.8%
Top0to60% 17.8% 6.7%
Top0to80% 17.8% 6.7%
Top10to80% 15.6% 8.9%

Table 2. Wishart density correlation results.

Alternatively, distributions of sample correlations in a rotated
space can be used. The following fact is employed: The log
density of a correlation matrix calculated using vectors sampled
from a normal distribution with a diagonal covariance equals a
constant times the log of the determinant of the correlation ma-
trix plus another constant. [6, p. 266]. The model covariance
matrices are routinely not diagonal, however a change in coordi-
nates rectifies the situation. In the training stage, the eigenvectors
E of the covariance matrix are computed in order to effect the
desired change of coordinates. The covariance matrix in the new
coordinate system, E'ZE, is diagonal. The matrix

R* =D '*E'SED™'", 6)

where D is now the diagonal matrix of E'SE, is the test corre-
lation matrix in the rotated coordinate system. The log likehood
of R* is

LR, E) = kn,plog |R"| + kp p. M
We name £(R*; E), ROT-R.

Error percentages are reduced significantly by using the ROT-
R scoring algorithm as illustrated in Table 3. When combining
ROT-R and DCOV and the robust Top0to80% scoring algorithm
is used, an error rate of 2.2% is obtained. Experimentally, cor-
relation matrices possess a channel robustness which covariance
matrices do not have.

Mansour and Juang [4] projected training cepstral vectors onto
test vectors, resulting in scaled test vectors in order to improve
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Percent Error | ROT-R | ROT-R + DCOV
Sum 13.3% 11.1%
Clip0 28.9% 15.6%
Top0to60% 20.0% 4.4%
Top0to80% 13.3% 2.2%
Top10to80% 15.6% 4.4%

Table 3. Rotated correlation density results.

speech recognition results when signal-to-noise ratios are low.
They argue that cepstra directions are more robust to changes
in the signal-to-noise ratio than cepstra magnitudes. In text-
independent identification, however, individual test and training
cepstra cannot be matched. Therefore, we experimented with
scaling individual cepstral vectors to unit length. Recognition
results, however, decreased dramatically. Even though cepstra
magnitudes are susceptible to channel changes, they still provide
useful identification information. Perhaps scaling by some func-
tion of the signal-to-noise ratio of utterances is the thing to do.

At first glance, replacing covariances by correlations appears to
be liftering; namely a scaling the cepstral coefficients. Liftering,
however, scales all sessions by a uniform amount, whereas we
scale each training and test session separately. Liftering has no
impact on WISH-R identification results. In fact, all linear trans-
formations of the cepstral space affect only the inconsequential
constant of Equation 2: If C is a linear transformation, then the
sample covariance of the transformed cepstra, CSC’, is again
Wishart with parameter CZ'C’. Hence

Lcsc;cxey =

-1 Liog|CEC /n) - (€' 5O OS0! + ksing
-_r-l log|Z/n| — (n — 1)log|C| — g—tr(E_lS) +ks,np
=2 Liog|Z/n| - 2H(Z'S) + Ksgyng

3
since C'~'Z~18C’ has the same eigenvalues as X' S. ROT-R
results are, however, not invariant to linear transformations and
in particular liftering.

Correlations were also tested on the difference cepstra. After
all, if the cepstra are scaled, then so are the difference cepstra. Ex-
perimentally, however, recognition results using difference cep-
stra correlations rather than difference cepstra covariances de-
clined slightly.

5. Dynamic Covariances

In measuring a speaker’s cepstral covariance matrix, we are mea-
suring the covariance of an error in the fit of a model to data. In
many cases the model is simply a mean vector and we are sim-
ply measuring the covariance of deviations of the observations to
this relatively simple model. In general, however, a sequence of
cepstral vectors can be represented as

z(t) = po(t) + €(t), t=1,...,n, (&)

where pg(t) is the time varying mean with parameter 8, €(t) is the
deviation of the observation from the mean and n is the number

of observations. With this model we estimate the covariance of
the errors by

§= 717 Z e)E'(D), (10
t=1
where
&) =z(t) — pue(?) (11

and 6 is an estimate of the parameter of the mean ue(t). We refer
to the covariances estimated from a model such as the one given
by Equation 9 as Dynamic Covariances in that they are obtained
from models having time varying means.

A motivation behind dynamic covariances is that by having a
more accurate representation of the underlying process via the
time-varying mean, the error term given by Equation 11 better
characterizes the speaker. If the mean is not well estimated, then
the variances of the error term will be inflated by the lack of
fit. Speech is a non-stationary process with the sources of non-
stationarity being the words spoken as well as time variations in
the channe! due to spurious noise events, changing noise levels,
and hand-set movement, among others. Dynamic covariances are
aimed at improving speaker identification performance in the face
of these sources of variability.

Dynamic covariances are also applicable in those situations
where the test speech is of significantly shorter duration than the
amount of data employed in estimating the speaker’s covariance
matrix. For example, typically 30 seconds of training speech are
used to obtain reasonable estimates for the 105 covariance pa-
rameters for the 14 low order cepstra. In contrast, test utterances
are segmented into 1 second chunks for our robust scoring algo-
rithms. Hence a mismatch in the standard covariances computed
in testing and training. Variances are greater in training than
in testing due to longer utterance lengths and hence a worse fit
by a constant mean. Dynamic covariances can compensate for
mismatches in covariances due to utterance length.

Table 4 gives dynamic covariance (DYN-COV) results when
py(t) is piecewise constant over one second intervals. Since the
means in training are computed over one second intervals the
covariances in training now “match” the one second covariances
computed in testing for the robust scoring algorithms. As test
covariances are computed from exactly one second of speech
normally, no changes are required in the test code. The DYN-
COV results, alone are as good as the baseline COV+DCOV
results, thereby eliminating the need to compute derivative fea-
tures and scores altogether. Error rates obtained using piecewise
linear p4(t) dynamic covariances are slightly higher. In a similar
vein, Montacie {7] and then Griffin et al. 8], use covariances of
cepstra deviations from a Multivariate Auto-Regression (MAR)
model, M(¢,z(t — 1),...,z(¢t — q)), to perform speaker identifi-
cation.

Percent Error | DYN-COV | DYN-COV + DCOV
Sum 13.3% 13.3%
Clip0 15.6% 17.8%
Top0to60% 11.1% 11.1%
Top0to80% 8.9% 11.1%
Top10to80% 8.9% 6.7%

Table 4. Piecewise constant u(t) dynamic covariance results.

The dynamic covariance approach is not applicable for use with
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difference cepstra as the difference cepstra means are all zero plus
some negligible random error, as mentioned earlier. Combining
techniques, a dynamic correlation approach is, however, possi-
ble. Table 5 gives results obtained combining the correlation
and dynamic covariance methods. Piecewise constant mean cor-
relation scores are computed and denoted by DYN-ROT-R. An
error rate of 2.2% is obtained using dynamic correlations and the
Top10to80% scoring algorithm.

Pct. Error DYN-ROT-R | DYN-ROT-R + DCOV
Sum 15.6% 8.9%
Clip0 28.9% 15.6%
Top0to60% 13.3% 6.7%
Top0to80% 17.8% 4.4%
Top10to80% 17.8% 2.2%

Table 5. Piecewise constant u(dynamic) correlation results.

6. Conclusion

Two new methods for text-independent speaker identification are
presented. The first technique substitutes correlations rather than
the more standard covariances to model speakers voices in an
attempt to compensate for changes in cepstral variances due to
changes in the signal-to-noise ratios between training and test-
ing. The log likelihoods of correlations computed from Gaus-
sian observations can be computed either by assuming they have
Wishart distributions or by using the theoretical distribution of
sample correlations in a rotated space. The second technique,
dynamic covariances, models speakers by covariances of residu-
als from time varying mean models, pg(?), rather than residuals
from constant mean model to help compensate for time-varying
channel artifacts.

It is emphasized that too few tests were performed (and so too
few errors are present) to make sweeping conclusions about the
relative merits of the various algorithms. Nevertheless, the cor-
relation scores, ROT-R, whether regular or dynamic, combined
with DCOV scores result in the highest identification accuracies.
Figure 1 presents a summary of the experimental results for the
Top10to80% robust score. The hypothesis that the dynamic co-
variance score should improve results is reflected by the fact that
the DYN-COV error rates drop from 26.7% to 8.9%. The de-
crease in error rate when the dynamic covariance is combined
with DCOV is, however, less dramatic. Apparently, the informa-
tion in DCOV is in some sense redundant with the information
in the dynamic covariance. On the other hand, the ROT-R corre-
lation results individually are not spectacular, but when ROT-R
is combined with DCOV, error rates are greatly reduced.
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