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ABSTRACT

The two largest factors affecting artomatic speaker iden-
tification performance are the size of the population and
the degradations introduced by noisy communication chan-
nels (e.g., telephone transmission). To examine experimen-
tally these two factors, this paper presents text-independent
speaker identification results for varying speaker population
sizes up to 630 speakers for both clean, wideband speech
and telephone speech. A system based on Gaussian mixture
speaker models is used for speaker identification and experi-
ments are conducted on the TIMIT and NTIMIT databases.
This is believed to be the first speaker identification exper-
iments on the complete 630 speaker TIMIT and NTIMIT
databases and the largest text-independent speaker identi-
fication task reported to date. Identification accuracies of
99.5% and 60.7% are achieved on the TIMIT and NTIMIT
databases, respectively. This paper also presents experi-
ments which examine and attempt to quantify the perfor-
mance loss associated with various telephone degradations
by systematically degrading the TIMIT speech in a manner
consistent with measured NTIMIT degradations and mea-
suring the performance loss at each step. It is found that
the standard degradations of filtering and additive noise
do not account for all of the performance gap between the
TIMIT and NTIMIT data. Measurements of nonlinear mi-
crophone distortions are also described which may explain
the additional performance loss.

1. INTRODUCTION

One of the major factors affecting speaker identification
performance is the size of the speaker population. In a
finite feature space, as the number of speakers to be dis-
tinguished increases, performance must eventually decrease
due to overlap of speaker distributions. Furthermore, the
introduction of degradations imposed by transmission over
the telephone network can further limit the distinguishabil-
ity of speakers’ voices. While in general both of these factors
have been noted by several researchers, there have been no
large scale studies examining both the effects of population
size and telephone degradations on speaker identification
performance. The purpose of this paper is to examine text-
independent speaker identification performance with vary-
ing speaker population sizes up to 630 speakers for both
clean, wideband speech and telephone speech.

A system based on Gaussian mixture speaker models [1,2]
is used for speaker identification and experiments are con-
ducted on the TIMIT [3] and NTIMIT Fi] databases. The

*THIS WORK WAS SPONSORED BY THE DEPART-
MENT OF THE AIR FORCE. THE VIEWS EXPRESSED
ARE THOSE OF THE AUTHORS AND DO NOT REFLECT
THE OFFICIAL POLICY OR POSITIONS OF THE U.S.
GOVERNMENT. ’

329

TIMIT/NTIMIT database pair was selected for this study
because it provides both clean, wideband and telephone
speech from a large number (630) of speakers. The NTIMIT
database also provides calibration signals for measuring
characteristics of the telephone lines used.

There are several aims of this study. The first aim is to
establish how well text-independent speaker identification
can perform under near ideal conditions for very large pop-
ulations. This will provide an indication of the inherent
“crowding” of the feature space. The next aim is to gauge
the performance loss incurred by transmitting the speech
over the telephone network for the same large population
experiment. The third aim is to examine the validity of
current models of telephone degradations commonly used
in developing compensation techniques. The approach is to
synthesize the assumed degradations on the TIMIT speech
using the NTIMIT calibration signals and determine if they
produce the performance loss actually measured when us-
ing the NTIMIT speech. A similar type of study for speech
recognition was reported in [5]. As shown later, it is found
that the standard degradations (filtering and noise addi-
tion) do not account for all of the performance loss and
the discrepancy may be due to some observed microphone
nonlinear distortions.

The remainder of the paper is organized as follows. The
next section briefly describes the speaker identification sys-
tem. This is followed in Section 3 with a description of
the characteristics of the TIMIT and NTIMIT databases
and presentation of speaker identification performance ver-
sus population size for both databases. The simulation of
telephone degradations and their evaluation is given in Sec-
tion 4. Measurements and observations of microphone non-
linear effects are then given in Section 5. Last, discussion
and conclusions are given in Section 6.

2. SPEAKER IDENTIFICATION SYSTEM

The identification system is a statistical recognition sys-
tem based on representing each speaker’s acoustic parame-
ter distribution by a speaker-dependent Gaussian mixture
model (GMM), p(#:|),) = Ef__l p! b#(f£), with mixture
weights p{ and Gaussian densities bf(Z). The Gaussian mix-
ture speaker model can be viewed as a hybrid between two
effective models for speaker recognition: unimodal Gaus-
sian classifiers and vector quantizer codebooks. The GMM
has been shown to be an effective speaker representation for
both identification and verification tasksags].

Speech is parameterized as mel-cepstral feature vectors.
All cepstral coefficients except c[l(:] are retained in the pro-
cessing. For the telephone speech, cepstral analysis is per-
formeﬁ only over the mel-filters in the telephone passband
(300-3300 Hz) and noise frames are removed using an adap-
tive, energy-based speech detector. For the clean speech,
all mel-filters (24 total) are used and no speech detection is
performed.
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3. TIMIT AND NTIMIT RESULTS

3.1. Databases

The TIMIT database allows examination of speaker identi-
fication performance under almost ideal conditions. With
the 8 kHz bandwidth, lack of intersession variability, acous-
tic noise and microphone variability or distortion, recog-
nition errors should be almost entirely a function of non-
distinguishable speaker distributions. Furthermore, the
speech is read sentences designed to have rich phonetic vari-
ability, which favorably biases TIMIT performance com-
pared to similar length utterances extracted at random from
extemporaneous speech.

The NTIMIT database consists of the TIMIT sentences
played throngh a carbon-button telephone handset', trans-
mitted through a local or long-distance central office and
looped back for recording. Performance differences between
identical experiments on TIMIT and NTIMIT should arise
mainly from the effects of the microphone and telephone
transmission degradations.

3.2. Results

In the following experiments all 630 speakers (438 males,
192 females) are used. Speaker models with 32 Gaussians
are trained using the 2 sa sentences, 3 si sentences and 3 sx
sentences (approx. 24 sec). The remaining 2 sx sentences
are individually used as tests (a total of 1260 tests of 3 secs
ea.ch%. TIMIT results are from training and testing with
TIMIT speech and NTIMIT results are from training and
testing with NTIMIT speech.

Figure 1 shows speaker identification accuracy versus
population size on the TIMIT and NTIMIT databases.
Identification accuracy for a population size S is computed
by performing repeated speaker identification tests on 50
sets of S speakers randomly selected from the 630 pool of
available speakers and averaging the results. This helps av-
erage out the bias of a particular population composition.
Popul::.iion sizes of (10, 100, 200, 300, 400, 500, 600, 630)
are used.
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Figure 1. Speaker identification accuracy as a function
of population size on TIMIT and NTIMIT databases.

Under the near ideal TIMIT conditions, performance is
barely affected by increasing population sizes. This indi-
cates that the limiting factor in speaker identification per-
formance is not a crowding of the feature space (at least
for population sizes of 630 speakers). However, with tele-
phone line degradations, the NTIMIT accuracy steadily de-
creases as population size increases. The largest drop in ac-
curacy occurs as the population size increases to 100. Above
200 speakers the accuracy decrease becomes almost linear.
With the full 630 speaker populations, there is a gap of 39
percentage points between TIMIT and NTIMIT accuracy
(TIMIT Pc = 99.5% =+ 0.2%, NTIMIT Pc = 60.7% + 1.4%).

1The same handset was used for all speech.

The large population TIMIT results are in agreement
with results from other sites [7,8]. To the authors’ knowl-
edge, there have been no published results on the NTIMIT
database.

4. SIMULATING TELEPHONE
DEGRADATIONS

4.1. Telephone Degradations Model
The prevailing model of the telephone transmission path
used in speecﬁ processing is a linear filter followed by an
additive noise source. The microphone and telephone chan-
nel are generally combined and modeled as a linear filter.
The noise is often assumed to be additive stationary white
or colored Gaussian. With this model, the assumed degra-
dations are bandlimiting, spectral shaping, and noise addi-
tion. Other degradations such as additive tones, impulsive
noise, phase jitter and nonlinear distortions may certainly
affect the speech signal but are considered secondary effects
in this model.

The system to simulate these degradations on the TIMIT
speech using the NTIMIT calibration signals is shown in

Figure 2 and described next.
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Figure 2. Simulation to corrupt TIMIT sentence to

match NTIMIT sentence.

Bandlimiting: Mel-cepstral coefficients were derived from
mel-filterbank outputs over the frequency range 300-
3400 Hz. '

Spectral Shaping (flll;ering{l:ll The sweep tones from
each NTIMIT telephone line were used to derive an
FIR channel filter by using a MSE FIR filter design
to match the sweep-tone’s magnitude spectra. Each
TIMIT sentence was then filtered by the channel filter
from the corresponding NTIMIT sentence?.

“As illustrated in Figure 3, there is little spectral vari-
ability among the NTIMIT channels. The dominant
spectral shaping appears to be from the carbon-button
microphone.

Noise addition: Broadband colored Gaussian noise was
added to each TIMIT sentence at a level to match the
signal-to-noise (SNR) of the corresponding NTIMIT
sentence. In this way the same NTIMIT sentence-to-
sentence noise levels are used. The coloring was a high-
frequency de-emphasis filter designed to match noise
characteristics observed in several NTIMIT sentences.
The NTIMIT sentences had a mean SNR of 36.5 dB®
with a standard deviation of 5.6 dB while the noise cor-
rupted TIMIT sentences had a mean SNR of 36.7 dB
with a standard deviation of 5.6 dB. The clean TIMIT
had an average SNR of 53 dB.

2The NTIMIT database provides a file indicating through
which telephone line each NTIMIT sentence was passed.

3SNR measured as the ratio of peak-signal energy to mean
noise energy.
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Table 1. Speaker ID results for TIMIT, NTIMIT and simulated NTIMIT (168 speaker subset)
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Figure 3. Channel responses derived from NTIMIT
sweep tones. Plot shows average response over 220 chan-
nels and average * standard deviation of the channels.

4.2. Evaluation of Simulated Degradations

The above degradations were sequentially imposed on the
TIMIT database and speaker identification accuracies cal-
culated. This experiment used a 168 speaker subset (112
males, 56 females; the “test” speakers) of the complete
database. Other experimental conditions were set as before,
except speech detection was not used. Speaker models were
retrained after each degradation wasimposed on the TIMIT
speech so results are for matched train/test conditions. The
results from the experiments are given in Table 1.

Even with all the degradations assumed by the model.
the corrupted TIMIT results are still 16 percentage points
higher than the NTIMIT results. A further test using
speaker models trained on NTIMIT to recognize the cor-
rupted TIMIT speech only produced 39% accuracy. Al-
though not surprising, these results are clear indications
that the assumed model is not accounting for all the degra-
dations present.

The largest drop in performance occurred for the filter-
ing; however, blind deconvolution did not help performance.
The noise addition caused a smaller performance drop than
expected. Adding an extra 5 dB of noise to the estimated
noise level did further decrease the accuracy to 76.3%; how-
ever, the corrupted TIMIT speech then sounded signifi-
cantly more noisy than the corresponding NTIMIT speech.
While the TIMIT speech can be distorted enough to reduce
its performance to the NTIMIT level, the aim here is to
keep the degradations closely matched to those found in
the NTIMIT speech.

5. NONLINEAR MICROPHONE EFFECTS

Norlinear distortion from the carbon-button microphone
and telephone channels is one unaccounted for effect that
may help explain some of the performance gap between the
corrupted TIMIT and the NTIMIT results. Comparison
of TIMIT and NTIMIT speech segments does indeed show
evidence of these types of distortions. Simple static non-
linearities (e.g., quadratic and cubic) applied to the speech
signal map to convolutions of the original spectrum with
itself, introducing “phantom formants” at sums and differ-
ences of formant frequencies (i.e., intermodulation distor-
tions). This convolutional view of the nonlinear distortion
also indicates resonance bandwidths can be broadened or
narrowed depending on the order of nonlinearity. While
both of these effects can be found in the speech, it is very
difficult to estimate and apply these distortions as was done
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with the filtering and noise above.

As a first step in analyzing the effects of nonlinear distor-
tion we transmitted and recorded some simple test signals
over a telephone handset and channel to characterize the
extent of the nonlinearity preset in a typical telephone con-
nection. Two types of test signals were used to probe the
handset and channel: (1) sine waves with frequencies of
400, 675 and 1000 Hz, (2) a swept sine wave with a 10-4000
Hz linear sweep over a 2 sec duration. Both signal t
were generated at levels of 68, 78, 88, 98, and 108 dB. The
signals were digitally generated and stored onto a digital-
audio-tape (DAT). The signals were then transmitted under
two conditions:

o NOHS: no handset. Test signals were played out of the
DAT directly to a telephone line interface, transmitted
over a local PBX and the PSTN*, resampled at the
receiving line interface and stored to disk.

CARB: carbon-button microphone. Test signals were
played out of the DAT through an artificial mouth into
a handset with a carbon-button microphone. The DAT
output was adjusted so the 88 dB sine was played into
the handset at 88 dB SPL. The speech was sent over
the local PBX and PSTN, resampled at the receiving
line interface and stored to disk.

5.1. Telephone Channel Measurements

The NOHS condition provides the opportunity to measure
the frequency response and the non-linearities present in the
telephone channe] without the intervening handset. The left
plot in Figure 4 shows the received level of the fundamental
and second harmonic for the sine waves. In each case, the
labels on the curves indicate the frequency of the input sine
wave The three curves for the fundamental are quite linear
with a slope of 1.0 and almost coincident, indicating the
relative flat frequency response of the channel between 400
and 1000 Hz. The curves for the second harmonic show
random behavior when the input signal was below 98 dB,
corresponding to a second harmonic output of 50 dB or
less. This is because 50 dB is the approximate noise floor
for this channel, so the second harmonic was at or below
the noise floor for these input signal levels. Although the
level of the second harmonic does rise above the noise floor
for input signal levels of 98 and 108 dB, the spread between
the fundamental and second harmonic levels is still greater
than 35 dB. Thus, the telephone channel without a handset
appears linear.

The right plot in Figure 4 shows the frequency response
of the channel, as measured from the response to the sweep
tones, for five input signal levels. The difference between
the curves is relatively uniform, again demonstrating the
linearity of the channel.

5.2. Carbon-Button Microphone Measurements

Ideally, one would like to measure the characteristics of the
carbon microphone in isolation. However, because the chan-
nel is relatively linear and given that the frequency response
of the channel is almost flat between 400 and 2000 Hz, it is
reasonable to ignore the channel for fundamental vs. second
harmonic and frequency response measurements. The left

4Public Switched Telephone Network
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Figure 4. (Left plot) Comparison of measured fundamental and second harmonic signal lew}els for the NOHS condition.

(Right Plot) Frequency response for the NOHS condition
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Figure 5. (Left plot) Comparison of measured fundamental and second harmonic signal levels for the CARB coadition.
(Right plot) Frequency response for the CARB condition as a function of input signal level.

plot in Figure 5 shows the received level of the fundamental
and second harmonic for the sine waves. As a result of the
non-flat frequency response of the microphone, the funda-
mental curves are no longer coincident. Furthermore, the
fact that the curves are nonlinear is initial evidence of the
nonlinear response of the microphone. Additional evidence
of microphone nonlinearity is seen in the sharp increase in
the output level of the second harmonic as the input signal
level increases. For the 1000 Hz tone, the spread between
the levels of the fundamental and second harmonic is often
as little as 15 dB.

The right plot in Figure 5 shows the frequency response of
the microphone, as measured from the response to the sweep
tones, for four input signal levels. The extent to which
the frequency responses are not merely translations of each

other demonstrates the non-linearity in the microphone’.

6. CONCLUSION

This paper has presented the first speaker identification ex-
periments on the complete 630 speaker TIMIT and NTIMIT
databases. The experiments indicate that, under ideal con-
ditions, there is not an inherent crowding of the feature
space with increasing population sizes. However, degrada-
tions from telephone transmission do indeed diminish the
distinguishability of speaker voices, causing considerable ac-
curacy loss with increasing population size.

The simulation of the prevailing telephone degradation
model on TIMIT speech failed to produce results which
matched the observed performance on NTIMIT, indicating
the model is not accounting for some key degrada.tiog}s)i
Evidence of nonlinear distortion was found in the NTIMI
data (via “phantom formants”) and measurements were

5Presumably the response due to the 108 dB SPL signal would
have been even more marked, but severe distortion at that level
prevented reliable measurements of the sweep tone.

presented clearly showing the nonlinear distortion produced
by a carbon-button microphone.

Current effort is focused on developing plausible mod-
els and measurement techniques for the nonlinear distor-
tions, so we can determine the extent of performance loss
attributable to such distortions.
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