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ABSTRACT

The performance of systems for speaker identification (SID) can
be quite good with clean speech, though much lower with
degraded speech. Thus it is useful to search for new features for
SID, particularly features that are robust over a degraded channel.
This paper investigates features that are based on amplitude and
frequency modulations of speech formants, high resolution mea-
surement of fundamental frequency and location of “secondary
pulses,” measured using a high-resolution energy operator. When
these features are added to traditional features using an existing
SID system with a 168 speaker telephone speech database, SID
performance improved by as much as 4% for male speakers and
8.2% for female speakers.

INTRODUCTION!

Current systems for speaker identification (SID) can perform well
with very clean speech, though performance decreases signifi-
cantly when speech is recorded under more realistic acoustic con-
ditions, such as over noisy telephone lines [6]. Many of the
successful systems to date have relied solely on spectral based
features, such as cepstra, which are, however, highly susceptible
to degradations from noise and filtering imposed by a communi-
cations channel. These parameters are also typically computed
over a duration of several pitch periods; therefore they may not
adequately measure any fine structure in glottal or vocal tract
behavior that would occur more rapidly. In this paper, it is shown
that such fine structure can help cue a speaker’s identity from
degraded speech.

This paper explores the use of three high-resolution non-
spectral based features for measuring fine structure in speech: for-
mant AM-FM, “pitch jitter” and “secondary pulses.” Formant
AM-FM is the modulation of the amplitude and frequency of res-
onances of the vocal tract. Possible sources of formant AM-FM
include rapidly varying parameters of the vocal tract and aerody-
namic effects in the vocal tract [7]. Pitch jitter is minute period-to-
period variation in fundamental frequency. Lastly, multiple
impulses per pitch period, i. e., secondary pulses, are revealed in
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the envelopes and energies of bandpass-filtered speech, and some-
times the speech waveforms themselves. These secondary pulses
may be due to possible multiple glottal excitation sources in the
pitch period [2], nonlinear effects in the vocal tract {7], or beating
caused by closely spaced formants.

FORMANT AM-FM PARAMETERS

To measure formant AM-FM we use a high-resolution energy
operator suggested by Teager and developed by Maragos,
Quatieri, and Kaiser [4], [5], [7]. Given an AM-FM sinusoid with
a time-varying amplitude and frequency, the Teager energy opera-
tor returns a high-resolution energy estimate. Maragos, Quatieri,
and Kaiser also developed “energy separation” algorithms that
estimate the amplitude and frequency from the Teager energy of a
waveform and its derivative. Both the Teager energy operator and
the energy separation algorithms require a single (possibly AM-
FM) sinusoidal component in the waveform; the output is not
meaningful for “multi-component” signals. Thus a signal must be
bandpass-filtered around a sinusoidal component before perform-
ing energy measurements.

Figure 1 shows a block diagram of a formant AM-FM
speech analysis system. Order 19 LPC analysis is first used to find
potential locations of speech formants. Using the frequencies and
amplitudes from the LPC poles, the first three formants are
selected. The speech waveform is then bandpass-filtered around
the three formants with Gabor (Gaussian-shaped) filters with
bandwidths of 400 Hz. Gabor filters were chosen because of their
gradual cutoffs, which reduces incidence of ringing artifacts in the
time domain; the frequency response of the filter is also Gaussian-
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FIGURE 1. Block diagram of speech analysis system for
measuring formant AM-FM parameters.
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Either the Teager energy operator or the DESA-1 energy
separation algorithm [5] is applied to the bandpass waveforms,
creating three waveforms of energy, amplitude, or frequency, one
waveform for each formant frequency chosen. The sampling rate
of these waveforms is the same as the sampling rate of the origi-
nal waveform.

These analyses are performed in ten millisecond blocks,
dividing the speech waveform into frames. For each pair of con-
secutive 10 ms frames in the utterance, a feature vector is gener-
ated if both frames are voiced and the two frames are “similar”
(determined by applying a dynamic programming algorithm to the
formant frequencies and amplitudes). Because of this similarity
constraint, it is not necessary to find highly accurate formant esti-
mates for every speech frame. For each 20 ms segment of the
desired quantity (energy, amplitude, or frequency), the d. ¢. and
linear components are removed, the segment is multiplied by a
Hamming window, and cepstral coefficients (to be denoted by
c[n]) are computed. Mid-quefrency cepstral coefficients are used
as feature vectors to the SID system. High-quefrency cepstral
coefficients are not used so that pitch information is removed, and
low-quefrency cepstra are deleted to remove information about
the absolute energy of the formants.

PITCH JITTER AND SECONDARY PULSE
PARAMETERS

We also use the Teager energy operator during voiced speech to
generate both a high-resolution measure of fundamental fre-
querxcy2 and the location of secondary pulses. Figure 2 shows a
block diagram of the analysis system. A short-time Fourier trans-
form (STFT) is calculated on the speech signal, and from the
STFT magnitude a “low” and a “high” formant are selected. Ini-
tially, the low formant is the spectral peak at less than 1500 Hz,
and the high formant is the spectral peak above 1500 Hz. These
estimates are iteratively refined as in [5].

The speech waveform is then bandpass-filtered around
these two formant frequencies using a Gaussian filter, and the
Teager energy operator is applied to each filtered waveform.
Using the two Teager energy waveforms, four parameters are esti-
mated for each glottal period. The low and high “primary” pulse
locations P, and Py, are the times between pitch periods, as mea-
sured using the low and high Teager energies. A pitch measure
from a sinusoidal transform system is used as a guide in estimat-
ing Py and Py; this initial measure is computed over several pitch
periods. Likewise, the low and high “secondary” pulse locations
S; and S}, measure the times from the pitch period onset to. the sec-
ondary pulses. In all cases, these times are measured by finding
local maxima in the Teager energy, as indicated graphically in
Figure 2.

SPEAKER IDENTIFICATION

This section describes the speaker identification system used for
evaluations, and presents the results of several SID experiments.

2. Using the Teager energy to measure fundamental frequency was also
independently performed in {8].
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FIGURE 2. Block diagram of speech analysis system for
measuring pitch jitter and secondary pulses.

Speaker ID System

A Gaussian mixture model (GMM) SID system [6] is used for all
evaluations. During the training phase of this system, all feature
vectors from a particular speaker’s utterance are used to generate
a Gaussian mixture model; i.e., a weighted sum of M Normal dis-
tributions, each with its own mean, variance, and weight. The
number of Gaussian mixtures is set before training.

During testing, feature vectors are assumed independent,
so that the probability that a speaker model would generate the
string of observations from an utterance is simply the product of
the probabilities that the speaker model would generate each of
the observations. The flexibility of this system allows the signal
processing module to generate feature vectors only during parts of
the utterance when the features might be more meaningful and/or
robust (e.g., during voiced segments).

Preliminary Experiments with F ormant AM-FM

For a first set of SID experiments on clean speech, we used a ran-
domly selected subset of the TIMIT database [1] containing ten
male and ten female speakers. To test degraded speech, we also
evaluated with the same speakers from the NTIMIT database [3],
which is a copy of the TIMIT database that has been transmitted
over the telephone network.

For each database and measurement (energy, amplitude, or
frequency), a suite of SID experiments was conducted by varying
the formant used to compute the cepstral feature vector, the subset
of the full cepstral feature vector to pass to the SID system, and
the number of Gaussian mixtures used in generating the speaker
models. One set of these parameters was chosen for all results:
¢[9]—[28] were used from a combination of feature vectors from
all three formants, with 16 Gaussian mixtures. Experiments using



the frequency estimated from energy separation algorithms pro-
duced poor results, so only the Teager energy was used.

The performance obtained was considerably less than can
be obtained with standard techniques (e. g., 100% for TIMIT),
which is not unexpected since no absolute spectral content is
used. For both databases, using cepstra from F1 alone provided
best performance of the individual formants (75% and 58% for
TIMIT and NTIMIT, respectively). Combining the cepstral vec-
tors from the first three formants resulted in the best overall per-
formance (83% and 75%). While lower than the TIMIT results,
the NTIMIT results do not degrade significantly. This is encourag-
ing; one goal of using nonlinear signal processing is to generate
features that are robust under noisy and filtered conditions. Based
on these and other preliminary experiments, formant AM-FM fea-
tures and secondary pulse parameters were then combined with
mel-cepstral coefficients.

Combining New Features with Mel-Cepstra

To evaluate the effectiveness of a combination of standard and
new features, a different database subset of twenty male and
twenty female speakers were chosen from NTIMIT. These forty
speakers were “difficult” in the sense that they caused the most
identification errors when the GMM SID system was run using
mel-cepstra alone as the input feature vector. The male subset and
female subset were evaluated separately.

Formant AM-FM Results

Mel-cepstra and Teager energy cepstra were combined in the SID
system by treating the two feature streams as independent. For
each speaker model, the SID system calculated the probability
that each of the two feature streams would be generated by the
GMM speaker model, and multiplied these probabilities (or added
log probabilities) to create the final score. Therefore, mel-cepstra
and Teager energy cepstra frames need not be aligned, and it is
possible to have a different number of feature vectors in each
stream, greatly simplifying front-end processing.

The same parameters are used as in the preliminary exper-
mments, since they consistently produced the best SID perfor-
mance. With formant AM-FM parameters alone, performance was
27.5% for males and 37.5% for females. Performance of mel-cep-
stra by itself was 55% for both genders (one binomial standard
deviation is 7.9%). The combined performance was 60% for
males and 70% for females. It is not surprising that Teager energy
cepstra alone does not perform as well as mel-cepstra, considering
the lack of absolute spectral information in the Teager energy cep-
stra. When the Teager energy cepstra are combined with mel-cep-
stra, however, speaker identification performance improves by 5
percentage points for the male speakers and 15 percentage points
for the female speakers. It is interesting that the females improved
significantly more; traditionally, female speakers have been more
difficult for speech processing systems.

Pitch Jitter and Secondary Pulse Results

We have also combined the four pitch jitter and secondary pulse
parameters with mel-cepstra on the same NTIMIT subset. As with
the formant AM-FM parameters, the mel-cepstral and Teager-
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based feature streams were treated as independent streams, and
combination required simply multiplying the probabilities from
the two streams. This method is especially useful for combining
pitch-synchronous features such as pitch jitter and secondary
pulse location with frame-based features such as mel-cepstra. 16
Gaussian mixtures were used in the SID system.

Adding mel-cepstra to the high-resolution pitch from the
low formant improved performance to 65% and 62% for males
and females, respectively. After further adding secondary pulse
locations from both formants, performance increased to 68% and
65%. Finally, adding the high-resolution pitch from the high for-
mant improved performance to 70% for males and females.

Our results also showed that using high-resolution funda-
mental frequency provided 5-7% higher SID performance than
using the sinusoidal transform-based fundamental frequency mea-
sure computed over several pitch periods, indicating the potential
importance of pitch fine structure.

Experiments with Good Performing Speakers

The previous experiments combining formant AM-FM and glottal
parameters were conducted with 40 “difficult” NTIMIT speakers.
It was important to verify that combining these parameters with
mel-cepstra did not degrade performance for speakers with good
SID performance. We selected another NTIMIT subset of twenty
male and twenty female speakers, for which the mel-cepstral SID
system performed perfectly. For both parameter sets and both
males and females, performance dropped from 100% to 97.5%;
we did not consider this an appreciable loss, and concluded that
the new features did not degrade performance on easier speakers.

Combining Features Using a Larger Data Set

The previous experiments combining mel-cepstra with new fea-
tures were all conducted with 40 testing utterances; both sets of
experiments were conducted on either very “bad” or very “good”
speakers. In order to increase statistical significance and choose a
more representative data set, we chose a larger subset of NTIMIT
for further experiments. 168 speakers were selected; 112 males
and 56 females.

Formant AM-FM Results

Results for formant AM-FM parameters are shown in Figure 3.
One binomial standard deviation for male, female, and total per-
formance is 2.8%, 4.2%, and 2.3%, respectively. For this data-
base, SID was performed on all speakers simultaneously, though
there were no gender errors for mel-cepstra or the combination.
The same feature and SID system parameters were used as were
used in the previous formant AM-FM experiments. Although the
new features slightly improved total performance, what is again
interesting is that male performance dropped relative to mel-cep-
stra, but the female score improved by almost two binomial stan-
dard deviations. Recall that we also saw greater performance with
females with the “difficult” 40 NTIMIT speakers; it should be
well worth looking into why the female scores are enhanced by
the new features.
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FIGURE 3. Speaker identification performance with
formant AM-FM parameters on the NTIMIT 168
speaker subset.

Pitch Jitter and Secondary Pulse Results

Figure 4 shows SID results when combining pitch jitter and sec-
ondary pulse parameters with mel-cepstra on the larger data set. 8
Gaussian mixtures were used for all experiments. Compared with
mel-cepstra alone, the full combined feature set resulted in a 4%
increase with male speakers and no change for the females.
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FIGURE 4. Speaker identification performance with
pitch jitter and secondary pulse parameters on the
NTIMIT 168 speaker subset.

Using the NTIMIT 168 speaker database, mel-cepstral
coefficients were also combined with the lower resolution pitch
estimate from the sinusoidal transform system, and SID perfor-
mance was 81.7% for males and 74.5% for females. This perfor-
mance exceeds that for the full combined pitch jitter/secondary
pulse feature vector. This is inconsistent with the results on the 40
difficult NTIMIT speakers, where we saw improved performance
with a high-resolution pitch estimate.

CONCLUSIONS

We have described techniques for performing nonlinear high-res-
olution measurement of speech parameters, and applied these
measurements to a speaker identification system. Speaker identifi-
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cation results can be improved when combining these features
with spectral-based features, suggesting the potential importance
of speech fine structure (previously neglected) for speaker identi-
fication. For a 168 speaker NTIMIT data set, formant AM-FM
parameters substantially improved SID performance on female
speakers, while high-resolution excitation parameters boosted
performance for males.

We are continuing to enhance the rather simplistic estima-
tion methods used to generate the new features. We also will
investigate the source of the performance difference between
male and female speakers. Finally, we will evaluate with other
conditions and databases that are more difficult for traditional
techniques and might benefit from the introduction of the tech-
niques described in this paper. '
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