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ABSTRACT

Keywords are chosen on the basis of their usefulness for
discriminating a topic from background speech. Good
topic recognition can be achieved with a small set of well-
chosen keywords, but particular combinations of
keywords often achieve better discrimination than can be
accounted for by regarding them as independent. This
paper describes a higher-order statistical approach
involving models of keyword-topic interdependence. A
linear-logistic model brings some improvement in
performance, but better results are obtained using log-
linear contingency table models. Although the potential
number of these is very large, good models tend to be
simple and are suggested by heuristic measures inferred
from the training data. The approach is tested using a
broadcast radio database.

1. INTRODUCTION AND KEYWORD
SELECTION

Our aim is to use a small set of well-chosen keywords for
discriminating a topic from background speech, taking
account of the fact that keywords in combination are more
powerful than they are independently. Criteria for
keyword selection are plausibly based on measures of
frequency, information or both [1,2]. The measure used
here is simple to apply and has also been employed for
selecting phonemes for speaker identification [3].
Distributions of counts of the chosen keywords in
windows of speech can then be trained and put to use. A
multinomial distribution or mixture [2] treats the
keywords as occurring independently, and this limitation
is partially lifted by logistic discrimination models [2]. In
this paper we compare this with more powerful models of
dependence between keywords and topic.

When selecting the keywords we treat them as
independent. Let T denote topic and consider the string of
spotted keyword occurrences for the topic training data,
of total length N. If this contains n, occurrences of the

kth keyword w; (some may be false positives), then the
relative probability for the topic data is P(w; | Ty=n/N.
Similarly the probabilities for non-topic data P(wk| T
can be found, and the log-likelihood ratio for the keyword
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data (given N) follows from the multinomial distribution:

. P(Tll,ﬂz,"'lT) ,_Z o P(wk|T)
gP(nl,nZ,---|T) Kk gP(wkl T
P(w | T

= NZk P(wk I T)log?(-;)k—l—_fi-

Keywords are ranked on the basis of their relative
contribution to the discrimination for the topic, described
as “usefulness” [3}:

P(w, | T)
P(w; | D1 —[—.
Wy I Og P(wk )

Keyword selection therefore depends both on the relative
frequency of occurrence in topic and non-topic speech and
on the absolute frequency of occurrence in topic speech.
The highest-ranked keywords are taken forward for
training and scoring.

2. SCORING DISTRIBUTION

The speech is segmented into windows, of typically 60 sec
duration with 30 sec overlap. A window-scoring criterion
can be based on an accumulation of likelihood ratio over
all spotted keywords within the window [4], where the
probabilities are derived from actual word spotting rates
rather than from text [3], and the decision between topic
and non-topic is controlled by a threshold to generate an
operating characteristic (ROC) curve.

An improved criterion is based on the smoothed one-
dimensional distributions of keyword counts within the
window: P, ((n;) for count n; =0,], .- occurrences of the
kth keyword, and from now on we use the subscript
t=0o0r1 to denote conditionalisation on non-topic or

topic respectively. The likelihood ratio for a new window
assuming independent keywords is then given by

P1(n1/’"/ n[() _ L Pl,k(nk)

= 1
By(ny, -, ng) g Fo i) ()

where K is the number of keywords engaged. Once again,
the topic/non-topic decision is controlled by applying a
threshold to this quantity, yielding an ROC curve.
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The keyword count distributions are estimated from
training data, and smoothed using a Poisson mixture
distribution [5] given by

8¢ k
Ctk
Cl‘,k +1

with mean and variance

ayp(a e +1)--(a,  +n-1)

, n=012,--
"!(ct,k +1)rl

Ak 2
Hexk=—""—, O

Ak . Btk
’ + 2
€tk ik Cik

k=TT

The parameters 4, ¢, are easily identified from the

measured mean and variance. The usual Poisson
distribution is a limiting case, but the mixture achieves a
far superior fit to the keyword data because the mean and
variance are separately controllable, and typically the
variance of the keyword count is higher than the mean.
The smoothing parameters are assigned optimally without
reference to test data, using a minimum mean-square
error criterion [6], for each keyword and for t = 0,1. This
model (independent keywords) is the baseline model for
comparison with the higher-order procedures.

3. MODEL DEVELOPMENT

One way to produce a likelihood ratio directly from
keyword counts, and that permits keyword dependence,
is to use the linear-logistic model

P(T ny,--,n ) K
IOg——_-L——L= ZBknk
P(T|ny, -, ng) i
from which
Pny, - P(T)
e TR 2
Ry, -, " e"p[zﬁ" "]P(T) @

where ny=1, and By, -, By are coefficients that can be

estimated using the Newton-Raphson algorithm to
maximise the training data likelihood [7]. This model is
lacking in structure, so we aim for a framework in which
a comprehensive set of dependencies can be explored.

Because of the very large number of potential
combinations of keyword counts, it is useful to employ a
set of reduced variables 7,---,r¢ with smaller range,

based on quantiles of the distributions. We then have

Pi(ny,--,ng) _Pyn, - ) K Py [ 70)
Py(ny, - mg) Polr, -, 7g) ot Pox (g | 7o)

This separates the broad structure of dependence between
keywords and topic from the fine structure of the
individual counts. As the reduced variables become
coarser, some of the dependence information is lost but

the training problem is eased.

During training, a table of counts of windows for each
combination of values of the reduced variables is
accumulated for t =0,1. Let f,(n,---, rx) be the measured

count, and F,(r,---,rg) be the predicted count on the

basis of a fitted model. A standard methodology [6,7] for
the analysis of tables of this kind is to equate the log of the
latter quantity to a linear sum of parameters (log-linear
models), the parameters are then identified and the fit of
the model assessed. Let the K keywords be labelled
A,B,..., and the topic T, and consider the following model:
T, AT, BT, ‘KT

rR)=uAup vul U+ e U

n.t b +

x.t
A, K ®
U e t implied lower - order terms

log Fy(r,---,

+u

Here, u is an overall mean, u,T allows for different

frequencies of topic and non-topic windows such that

T

ug +uf =0, each term u,’i}- {where keyword X has count

value 7,) allows for dependence between that keyword

and topic, and uA’ fx allows for full interdependence

between keywords. All terms except u sum to zero over
each of their subscripts. The implication of lower-order
terms refers to the requirement that for each term
involving two or more variables, all terms involving
subsets of those variables must also be present. This
particular model corresponds to the linear-logistic model
(2) modified to the reduced variables, because

P, ome) _ R, ) Wo
Pylry, -, 1) Folrm,--,1x) W,

W,
=—-9-exp(ulT —ug +u:°"1
W, 1
T AT —n,KT
Thus, Bo=2u;, Byn =207, ..., Brxrg=2u 1. W and

W, are the total numbers of topic and non-topic windows

T AT KT K,T
—U G b U “rx,o)

seen in training.

Log-linear models can range between total independence

in which the only term on the RHS is «, and saturation in

which a term uA K T ¢ plus all lower-order terms ensure

that the model fits exactly to the table. We use the
iterative proportional fitting algorithm [6,7] to get the best
fit for each model and find the parameter values, and the
fit is assessed by the likelihood-ratio statistic

2 Z 2 filn,- 'I’K)log felry, -+, 1¢)
n ( 1s ..’rK)

(E,(ry,--,7¢) is the expected count for the fitted model).

Because the keyword count distributions differ between
topic and non-topic situations, we actually use different
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sets of reduced variables r,--, 7 x and 71y, 7k
respectively, and then the likelihood ratio is given by

Pny, -, ng) Pi(ny, - om k) Pl,k(”klrl,k)
Py(riy, -+, mx) PoCro,u, s 70,) ki Po e | 7o)

@

where the first term on the RHS is obtained directly from
the estimated log-linear model, and the remaining terms
from the smoothed independent distributions.

4. TEST ON BROADCAST RADIO DATABASE
4.1 Weather forecast keywofds

To test the topic-spotting models we use a database of 48
hours of speech, recorded in-house from BBC Radio 4.
Weather forecasts typically occur as 2 to 3 minute items
every few hours, and the ten best keywords (in terms of
the criterion described in section 1) were found to be
A:temperature, B:northern, C:showers, D:weather,
E:England, F:Scotland, G:Ireland, H:sunshine, l:degrees,
Jitomorrow. Using the first half of the data for training,
and running windows of 60 sec duration (with 30 sec
overlap) over the spotted keywords, we found 82 topic
and 3526 non-topic windows. In view of the small
number of topic windows we use a binary reduced
variable for each keyword:

Tk ={

where m,, is the median count for keyword k, topic

1
0

if ng >my
otherwise

t=0,1. Even then, with 10 keywords there are 1024 topic
cells for all combinations in the table, and most are empty.
In order to fit the log-linear models we do a small amount
of smoothing using the independent distributions.

A convenient way to specify models is by groups of items,
with each group corresponding to a term plus all implied
lower-order terms in the log-linear model. The linear-
logistic type model (3) is then specified as

AT/BT/ ... /]T/ABCDEFGHI]

indicating that the topic depends upon each keyword
separately (the first ten groups) and that the keywords
have full interdependence (final group). Here there is no
higher-order interaction between keywords and topic, and
we explore this interaction by specifying different models.
The number of possible models, where the groups span
the variables and are allowed to overlap but with none a
subset of any other, is very large: we have devised a
lower bound which implies that there exist at least

2x10% possible models for 10 keywords. A heuristic
procedure is therefore needed to search for good models.

The term AB...J (or in general AB...K) detaches the
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keyword interdependence, so that the rest of the model
can focus on the keyword-topic dependence. One natural
way to search for higher-order effects is to test models of
the form XYT/AB...] for pairs of keywords X)Y.

Although the statistic G? has an asymptotic chi-square

distribution (as for the Pearson statistic X?), this hardly
applies here because of the sparseness of the table, and its
skewness, with a small number of cells containing most of
the observations. If instead we compare two models by

G¥(XT /YT /AB---] | XYT / AB--])
=GYXT /YT /AB---])-GX(XYT / AB---])

where the first model is a special case of the second (the
third-order term being absent) then this has two
advantages [7]. First, the chi-square approximation is
much better because the figure effectively depends only
on the marginal totals in the table, which tend to have
higher values than the cell entries, and second the test is
more powerful because there are less degrees of freedom.
In fact by the general collapsibility conditions for multi-
dimensional tables [6] it is equivalent (and easier) to
perform this test onthe 2x2x2 table for X,Y,T.

The top-ranked keyword pairs by this criterion are found
to be BG, AB, BF, FG, IJ, F1, F] and so on, but it turns out
that these are not the most useful combinations in scoring.
Note that the combination BG is “Northern Ireland”, and
this occurs even more frequently in news and current-
affairs broadcasts than in weather forecasts, and is not
therefore a good discriminator for the latter. A better
guide is given by the statistic

G*(AT/BT/--/JT/AB-] | XYT/AT/--/]T / AB---])

This tests the pair X,Y with the remaining keywords also
present, independently associated with topic, in
comparison with the linear-logistic model. This time the
top-ranked pairs include AJ (“temperature tomorrow”,
chi-square P-value 0.046) and FH (“Scotland sunshine”, P-
value 0.141), and these prompt a good scoring model.

4.2 Spotting performance

The models are tested on the held-out half of the data,
using a minimum length of 120 sec both for a correctly-
spotted topic and for a false alarm. Figure 1 contains ROC
curves for

1. the baseline independent case (equation (1),
corresponding to the log-linear model AT/BT/.../JT),

2. the linear-logistic model (2),

3. the table of combinations of reduced counts, with light
smoothing applied (equivalent to the saturated log-
linear model ABC...JT),

4. the log-linear model

AJT/CFHT/BT/DT/ET/GT/IT/AB...] 5)

Equation (4) is used for 3 and 4. The curves are not
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5. CONCLUSIONS
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Creating a table of keyword-count
combinations (in reduced form)
enables the methodology of log-
linear contingency table models to be
put to use. This first reveals the
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combinations of keywords that are
most indicative for discriminating a
topic from general background, and
then provides a convenient decision
procedure for windows of speech.

Although the potential number of
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Figure 1: ROC curves for weather topic spotting.
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models is enormous, the best models
tend to be relatively simple and can
be discovered by heuristic methods,
assuming  statistical  consistency
between training and test data.
Scoring is very fast, and performance

smooth because of the finite number of topics in the test
data. The poor performance for the smoothed data table
(curve 3) is attributable to lack of training data. Of the
reduced-variable keyword combinations seen in the test
data, 96.1% for non-topic occur at least once in training
but only 17.2% for the topic. Window-scoring using topic
statistics is therefore based primarily (83% of the time) on
smoothing. On the other hand, the independence model
is better trained but ignores the higher-order effects.

A carefully-chosen log-linear model intermediate between
independence and exact fit can represent the dominant
higher-order effects while still being sufficiently thin in
parameters to permit adequate training. The table cell
probability estimators, obtained from the model and used
for scoring windows, have lower mean square error than
the sample proportions inferred from the data table. This
lifts the performance above the other models, including
the linear-logistic model.

The model (5) also works well when training and test data
are interchanged, and various other models also give
similar results. ’

With less than about 80 topic windows in the training
data, performance of the log-linear model declines more
rapidly than that of the linear-logistic model, but good
results can still occur. For example there are 14 financial
reports of at least one minute duration in the database, (21
60-sec topic windows, best keywords include Hundred,
Market, Sterling and Wallstreet). Using 8 of these reports
for training (8 topic windows), the best log-linear model
spots the remaining 6 topics with a false-alarm rate of 0.32
per hour compared with 2.03 per hour for the
independence model. However, this performance is very
fragile with such light training and the training data
heuristics are not a reliable guide in this case.
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is far superior to that obtained

assuming independent keywords,
with much less training data than would be required for
accurate estimation of multivariate keyword count
distributions. '

Clearly this approach is best suited to relatively
homogeneous topics characterised by small numbers of
good keywords. Other topics are more heterogeneous,
but the approach described here may still be applied if the
topic is first partitioned into homogeneous sub-topics.
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