A CONTINUOUS DENSITY NEURAL TREE NETWORK
WORD SPOTTING SYSTEM *

Stephen V. Kosonocky**, Richard J. Mammone

Rutgers University Center for Computer Aids for Industrial
Productivity, Piscataway, NJ 08855-1390 USA

ABSTRACT

A new classifier is described that combines the dis-
criminatory ability of the neural tree network (NTN) with
the Gaussian mixture model to create a continuous density
neural tree network (CDNTN). The CDNTN is used within
a Hidden Markov Model (HMM), along with a nonpara-
metric state duration modél to construct a continuous word
spotting system for real time applications. The new word
spotting system does not use a general background model,
~ allowing construction of independent models whose perfor-
mance is independent of the number of models in the recog-
nition system, supporting a direct parallel implementation.
Although HMM word spotting systems are shown to pro-
vide good performance when sufficient training data is
available, for applications where background speech data is
not available or only a limited numbers of training tokens
are available, the CDNTN word spotting system is shown
to out perform comparable HMM systems.

1. INTRODUCTION

Word spotting is the process of identifying the occur-
rence of keywords from a continuous speech utterance.
Recently, a number of papers have described new keyword
spotting systems. This paper presents a system based on a
new continuous density neural tree network (CDNTN) and
a Markov model with nonparametric state durations.

Recently attention has focused on constructing hidden

Markov model (HMM) based speaker independent word

spotting systems using either subword models or whole
word models [2][8](91{13]). Typically a system is trained
using speech data that contains keyword and non keyword
tokens from a training data base, to construct a limited
vocabulary recognition network consisting of keywords and
a non keyword background model. Recognition can be per-
formed using the Viterbi algorithm with the HMM network
consisting of each keyword in parallel with a general back-
ground model. Performance of these systems is dependent
on the number of keyword models in the system and the
ability of the background model to absorb the non keyword
utterances.
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A number of speech recognition systems have used the
added discriminative ability of neural networks within the
state models of an HMM speech recognizer [6][15], to
increase performance. This paper will introduce a new clas-
sifier, called the continuous density neural tree network
(CDNTN), which combines the discriminatory ability of a
neural tree network (NTN) with a mixture of gaussians. The
CDNTN is used to model the posterior probability of a fea-
ture vector from a subword segment within a keyword, the
subword models can be connected together to form a
Markov chain to form a word model. Once a Markov chain
is created for each keyword, state durations are’ extracted
from the training data and clustered to form a state duration
template to nonparametrically model the durations of each
state. For testing, a dynamic time warping (DTW) algo-
rithm'is used to evaluate the state outputs for the test utter-
ance against the state duration model extracted from the -
training data. The state duration template provides a tempo-
ral model for the state outputs during a keyword occurrence
distinguishing between random state outputs and tempo-
rally aligned outputs during a keyword occurrence obviat-
ing the need for a recognition network.

2. Neural Tree Network State Models
A NTN is a hierarchical classifier [10] that uses a tree
architecture and logistic regression to implement a sequen-
tial decision strategy based on discriminative training. Each
level of the NTN uses a logistic regression algorithm (per-
ceptron model) to divide the input training vectors into the
best possible subsets according to an L, or L, cost function.

"Each subset is subsequently passed to a child node, and the

algorithm recursively proceeds until the subset consists of a-
homogeneous set of classes or until some pruning criteria is
satisfied [1][10]. The terminal “leaf” nodes are assigned a
label corresponding to the majority class of the subset of
training vectors reaching that node. During testing, an
unknown feature vector is directed through the tree by the
outcome of a logistic function using the weights stored in
each node until a leaf node is reached. The vector is then
classified according to the label at that leaf.

2.1 NTN Nonparametric Probability Estimation

Nonparametric discrete probability estimation is possi-
ble using a method such as Parzen windows [3], which
samples the feature space by hypercubes defining discrete
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regions. The posterior probability of class i for a feature
vector x, falling within region j can be approximated by,

k;
P(Clx) = ™

2k

=1
where k;; is the number of samples of class i in region j and
the denominator term corresponds to the total number of
samples of all classes in region j.

2.1.1 Discrete Probability Estimation using the NTN

Sampling of the feature space can also done by an
NTN where each leaf defines a discrete region j in eq. (1)
[4]. A pruned NTN can be used to non-uniformly sample
the feature space, allowing multiple classes to be repre-
sented within each leaf region. Since the NTN uses the
same cost function described in 7] to train a simple neural
network within each node, the hyperplane splits can be
shown to successively minimize the error of posterior prob-
ability estimation by the logistic functions. The net effect is
to partition the feature space so that confused regions where
the class distributions highly overlap, are sampled at a high
rate while, broad homogenous regions within the feature
space are coarsely sampled. Once an NTN is grown, eq. (1)
can be used to provide a discrete probability of a class
occurring given a training vector directed to the region j [4].

2.1.2 Continuous Probability Estimation
using the CONTN

Discrete posterior probability estimation using a win-
dow technique requires that enough samples of each class
are present in the window to obtain accurate sample counts
which reflect the distribution of vectors within the region.

Creating windows too small using a finite number of train-

ing samples can produce binary probability estimates of 0
or 1 when the regions are homogenous, corresponding to a
fully grown tree. To avoid this, a new classifier was created
blending parametric and nonparametric estimation tech-
niques similar to the graphical location models described in
[14] to allow finer resolution for more accurate probability
estimation. The posterior probability of class C; defined
within a discrete leaf region j can be given by Bayes’ rule
as, ,

Pi(CYP;(xC) -
7 ,
2 Pi(C,)P;(xC,)
n=1
where P(C;) is the prior probability of class i within region
J» The distribution for each class can be parameterized as a
mixture of Gaussians by,

PJ(CXI x) =

M
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where ¢;,,, W, and X, are the weight, mean and variance,

respectively, of the m™ mixture for class i, M is the number
of classes and d is the dimension of the feature space. Since

the leaf regions are not guaranteed to be statistically inde--
pendent, the global posterior probability can be found by

multiplying the probability of the leaf region with the local

probability, given by, '

P(C|x) = P(C|x)P;(C]x). (5)

The NTN portion of the model, partitions the feature
space into distinct regions to allow a local parametric model
to be developed on the data in that leaf region. For applica-
tions to subword modeling, this is depicted in Fig. 1, where
a CDNTN is trained to predict the posterior probability of a
subword occurring. Each substate model is a locally
derived model for a region weighed by the confusability of
the subword with feature vectors labeled as not belonging
to the subword. During recognition, an unknown feature
vector is applied, and the tree determines the appropriate
substate model. The CDNTN allows locally appropriate
models to be developed for classes that are inherently
drawn from different distributions, i.e. different vocaliza-
tions of the same subword.

Feature Vector
NTN
‘
| Subword Probability

Fig. 1 CDNTN Subword State Model

3. NTN Based Word Spotting System

A word spotting system was constructed using the
CDNTN as a posterior probability estimator for each state
of a left-right Markov chain without skips. A forced align-
ment algorithm was used to create the phonetic separations
within each keyword. Once the keywords were phonetically
segmented, a binary CDNTN model was grown for each
phonetic segment within each keyword using only the pho-
nemes within the same keyword as anti-class vectors for
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discriminant training. Once the models were trained, each
speech keyword utterance from the training data base was
applied to the chain of phoneme models corresponding to
the keyword model, and a set of durational models was cre-
ated for each keyword. The durational models were then
clustered using a K-means algorithm described in [12] to
obtain a master state duration template, illustrated in Fig. 2
for a sample keyword.
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Fig. 2 Example of state duration template.

The recognition process, depicted in Fig. 3, scans each
test utterance using a sliding window based on the keyword
state duration template length. For each window position,
the speech is parameterized into feature vectors and each
vector is applied to the state models within each keyword
model. The state outputs for the test utterance are then com-
pared to the keyword state duration template using a
dynamic time warping procedure. The distance score
obtained from the DTW algorithm is compared against a
threshold to determine a putative keyword occurrence. Fig.
4 shows the output of the system as a function of the feature
sample. Training each phoneme model independently with
only the speech utterances from the individual keyword
tokens, allows the recognition performance to be indepen-
dent to the number of keywords in thé system. This method
allows for a simple parallel implementation where each
keyword is searched independently on a set of processors,
producing a continuous stream of scores given continuous
speech input for real time monitoring.

3.2 Experimental Results

Evaluation of the new word spotting system was per-
formed using the NIST Stonehenge database [S] consisting
of marked speech files for 20 keywords. Training was done
using read paragraphs over actual telephone lines for 28
male and 28 female speakers from the Waterloo extension.
The test set consisted of conversational speech, bandpass
filtered to simulate telephone quality for 10 male speakers;
sm33c through sm41c, and sm43c. The features used for the
experiment consisted of the first 8 cepstral coefficients

derived from 18 mel-scale filter bank outputs with an added
normalized log energy term. The first and second differ-
ences were appended to create a 27 dimensional feature
Vector.
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Fig. 3 Word spotting recognition system
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3.2.1 System Performance

Word spotting performance is typically judged by the
detection rate (number of correctly spotted keywords/num-
ber of actual keywords) versus false alarm (FA) rate (num-
ber of insertions/keyword/hour). A figure of merit (FOM) is
defined as the average detection rate for 0 to 10 FA/kw/hr.
Table 1. shows the performance for each keyword, the over-
all FOM of 41.70% was measured, with 45.8% at 10FA/hr.

A similar test was done using an HMM word spotting
network similar to [2}{9]1[11]. Word spotting results on the
same test set using a two sets of triphone models for the
network, one using pooled keyword data to construct the
keyword triphones, another using pooled background data
for the non keyword triphones, gave an overall. FOM of
58.8%. When the background model was reduced to justa -
silence model, the overall FOM dropped to 19.73%. When
no background model was used the FOM dropped to
3.88%. Fig. 5 shows a comparison of the CDNTN system
performance to two HMM systems as a function of average
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number of training tokens used per keyword for all 20 key-
words. The first HMM system shown with the dashed lines
uses keyword pooled tokens to construct the keyword mod-
els, and pooled non keywords and silence tokens to con-
struct the background model. The second HMM system,
dot-dashed line, uses pooled keyword tokens to construct
both the keyword models and the background models with
an additional silence model. The CDNTN system uses only
keyword tokens, and no explicit background model.
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Fig. 5 Comparison of CONTN to HMM word sFotﬁng

system as a function of training tokens on male test

Keyword FOM Keyword FOM
BOONSBORO | 4594 | ROAD 8.63

CHESTER 28.69 | SECONDARY 92.31
CONWAY 52.44 | SHEFFIELD 66.67
INTERSTATE 34.67 | SPRINGFIELD 75.47
LOOK 0.00 THICKET 55.3%
MIDDLETON 59.09 | TRACK 21.03
MINUS 4699 | WANT 8.55

MOUNTAIN 12.89 | WATERLOO 51.94
PRIMARY 5245 | WESTCHESTER | 69.23
RETRACE 89.75 | BACKTRACK 76.97

Table 1. Performance scores for each keyword for 10
male speakers from the Stonehenge test corpus.

4. Concluding Remarks

A new classifier was described blending the discrimi-
native nonparametric modeling capabilities of the NTN
with a local parametric model based on a mixture of Gauss-
ians. A word spotting system was developed using this clas-
sifier which accommodates parallel implementation, with
performance independent of the vocabulary size and back-
ground model. Comparative experiments using HMM net-
works showed that it is possible to achieve superior
performance using a network of vocabulary words. Experi-
ments showed that the HMM performance degrades greatly

when the background model is omitted, or when the num-
ber of training tokens is reduced. The new NTN based word
spotting system described provides better performance for
applications when speech data for a general background
model is not available.
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