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ABSTRACT

A new scoring algorithm has been developed for
generating wordspotting hypotheses and their associated
scores. This technique uses a large-vocabulary continuous
speech recognition (LVCSR) system to generate the N-
best answers along with their Viterbi alignments. The
score for a putative hit is computed by summing the likeli-
hoods for all hypotheses that contain the keyword normal-
ized by dividing by the sum of all hypothesis likelihoods
in the N-best list. Using a test set of conversational speech
from Switchboard Credit Card conversations, we achieved
an 81% figure of merit (FOM). Our word recognition error
rate on this same test set is 54.7%.

1. INTRODUCTION

This paper describes how SRI International has
applied DECIPHER™ to the keyword-spotting task.
DECIPHER™ is SRI’s large-vocabulary speaker-indepen-
dent continuous-speech recognition (CSR) system, which
we have used for a number of different CSR tasks, includ-
ing Resource Management (RM), Air Travel Information
Systems (ATIS), and Wall Street Journal (WSJ) dictation
[1-4].

A number of other hidden Markov model (HMM)
based systems have previously been developed for key-
word spotting [5-8] which has two important dimensions:

* How keywords are hypothesized
* How keyword scores are computed

In our earlier work on keyword spotting [8], we
used the Viterbi backtrace from a large-vocabulary contin-
uous speech recognition (LVCSR) system. A keyword was
hypothesized if it appeared in the Viterbi backtrace. Using
the one best answer from the Viterbi backtrace, we used
the average probability per frame as the score for each
hypothesized keyword.

This algorithm worked well for high frequency
keywords, but was not able to generate the necessary
false-alarms (when the recognizer inserts this keyword)
needed to compute an receiver-operating curve (ROC).
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To improve keyword spotting performance, we
need to increase the frequency that keywords are hypothe-
sized. To complement this goal, we need a scoring algo-
rithm that will continue to reward hypotheses that are the
best recognition hypothesis.

The score used for hypothesizing keywords in our
earlier this system was based on a duration normalized
likelihood:
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In contrast to the duration normalized likelihood,
many other researchers have developed and use a log-like-
lihood ratio metric [5,6]:
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The advantage of such an approach is that the qual-
ity of the match to the data is not directly used, but the
comparison is relative to how it matches other candidate
hypotheses. However this likelihood ratio only uses
acoustic information about the keyword hypothesis.

One of the central aspects of our method is an
extension of this approach (Eq. 2) to an LVCSR system. In
order to incorporate additional information (primarily lan-
guage modeling information about the sequence of words
containing the keyword), we incorporate this technique
into a LVCSR system. The proposed metric (described in
Section 2) is called LVCSR log-likelihood ratio scoring to
denote the similarity to the above idea.

Another approach to computing a keyword hypoth-
esis score has been developed in [7]:

Prob( Stater, . _, = EndStateKeywo, 4 | Observations) (3)

While this approach also has the potential for using
a large-vocabulary CSR approach, the scoring metric has
several disadvantages. By looking at the last state in the
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keyword, we distinguish this state from all the other states
in the word hypothesis. If the last state does not match the
data well (even though all the other states have matched
well), then this focus on how a word ends can degrade sys-
tem performance.

2. LVCSR LOG-LIKELIHOOD RATIO
SCORING

2.1. Approach

The new scoring metric we propose is:
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where:
W is the word sequence: {w,,..,w}
W (KWe w) is all word sequences that con-
tain the keyword KW,

For a given set of observations (Obs) and a set of
HMM recognition models, we can compute a probability
distribution over all word sequences. The numerator in Eq.
4 is the sum of all such word sequences that contain the
keyword, while the denominator is the sum of the probabil-
ity of all word sequences.

The ratio of these two quantities is the percentage
of all recognition hypotheses (weighted by the probability
of different sequences) in which the keyword appears. If a
keyword appears in all likely word sequences, then it will
have a LVCSR log-likelihood ratio score of 0.0 (equivalent
to the log of the probability ratio of 1.0). .

Using Eq. 4, a keyword would be hypothesized
whenever there is a non-zero probability of a word
sequence that contains the keyword. The remaining issues
to resolve are:

* How to associate times (start, end) with keywords

* How to hypothesize and score a single keyword that
appears multiple times in a single sentence

* How to implement Eq. 4 using an LVCSR system
2.2. Implementation

Our implementation of Eq. 4 uses N-best lists [2,
10]. The N-Best lists correspond to the word sequences W
that we will be searching for the keyword.
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We compute the N-best lists using a progressive
search approach [2]. First, an initial two-pass recognition
system is used to generate word-lattices. Then, another
two-pass recognition system is used to generate N-best
lists using the word lattices to prunes the search.

If a keyword appears anywhere in the N-best list, it
will be hypothesized, with a score computed based on Eq.
4 as follows:
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where:
P(0bs 1 W) is the acoustic HMM probability
P( W} is the language model probability
W:(KWeNB) is the list of all N-Best word
sequences that contain the keyword

In comparing several recognition hypotheses, it is
important to resolve hypotheses where a word can appear
multiple times. To allow for this condition, each N-best
hypothesis contains the timing information of the Viterbi
backtrace associated with each word. This information is
used as follows:

* If the same keyword appears multiple times in a sin-
gle recognition hypothesis, it is considered as sepa-
rate keyword hypotheses.

* If two keyword hypotheses (each from a different N-
best recognition hypothesis) overlap in time, they are
considered to be the same keyword hypothesis.

* As we proceed through the N-best list (from best to
worst hypotheses), the time alignment for a particular
keyword hypothesis (start, end) uses the time align-
ments from the hypothesis with the highest (probabil-
ity per frame) feature.

Finally, we modified the implementation of Eq. 5
for breaking ties. If a keyword appears in all the N-best
lists, then it will receive a score of 0.0 (log(1.0)). To run
NIST’s credit-card wordspotting software, it is important
to break ties between false-alarms and true-hits (otherwise
the false alarm is assumed to be of a higher score). There-
fore, we have modified the implementation of Eq. 5 to add
in an epsilon weight times the score in Eq. 1.



3. EXPERIMENTAL RESULTS
3.1. Development Test Set Description

A development test set has been assembled for rec-
ognition and wordspotting experiments. It contains the
same speakers and conversations that were used at the
1993 Robust Recognition Workshop in Rutgers, New Jer-
sey. All the conversations were subdivided using their
Switchboard [11] .mrk files, and an expert transcriber cor-
rected all the transcriptions by hand. This test set contains
10 male and 7 female speakers, for a total of 1,928 utter-
ances (1,065 male, 863 female). Hand-corrected keyword
references (.ref files) were generated so that this same test-
set can be used for developing wordspotting technology.

3.2. Experiments

The speech recognition system used a vocabulary
size of 5,000 word which included all the keywords. A
bigram grammar was used as well as genonic HMM
acoustic models [1]. The size of the N-best lists used were
500. The two-pass system that generates lattices used a
lexical-tree for the back-off node [12].

The wordspotting ROC curve for using the LVCSR
log-likelihood is shown below. The probability of detec-
tion (P(D)) is plotted as a function of the number of false
alarms. This ROC curve corresponds to an average proba-
bility of detection (averaged from 0 to 10 FA/KW/HR) of
81% (FOM).

ROC Curve
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To compare this algorithm to other approaches, we
tested the performance of several algorithms. Those
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results, displayed in Table 1, are also on the credit card
subset of the Switchboard corpus.

Using our previously developed Viterbi 1-best path
algorithm [8], we achieved an FOM of 69.7%. The limit-
ing factor in this approach is that it does not hypothesize
enough false alarms.

The Viterbi 1-best approach can be extended to
hypothesize a keyword any time the keyword appears in
an N-best list. The score of this keyword is the best proba-
bility-per-frame score of any hypothesis in any of the N-
best lists. As the very poor performance (41.5% FOM) of
this algorithm shows, many false alarms that appear in
other locations in the N-best list that will have a good
score (probability per frame), even though the overall rec-
ognition hypothesis that this keyword appears in received
a very poor score.

The last entry in Table 1 is the new LVCSR log-
likelihood ratio metric described in Section 2. The LVCSR
log-likelihood approach shows an improved detection rate
at high false alarm rates, while maintaining an even higher
average probability of detection (FOM of 81%).

Wordspotting Algorithm Figure of Merit
Viterbi 1-Best Hypothesis Using Dura- 69.7
tion-Normalized Likelihood
N-Best Hypothesis Using 415
Duration-Normalized Likelihood
LVCSR Log-Likelihood Ratio Scoring 81.0

Table 1: Credit-Card FOM for different wordspotting algorithms

4. DISCUSSION

A new scoring algorithm has been implemented for
spotting keywords using a large-vocabulary continuous
speech recognition system. This technique uses the N-best
answers and their Viterbi alignments to compute the prob-
ability that each particular keyword is present in an utter-
ance. The score for a putative hit is computed by summing
the likelihoods for all hypotheses that contain the keyword
and dividing by the sum of all the likelihoods for all the
hypotheses in the N-best list. In cases where the keyword
exists in all the N-best answers, this score will be 0.0 (log
probability of 1.0).

We have contrasted this keyword scoring algorithm
to earlier approaches, and presented experimental evi-
dence of how this algorithm is superior to earlier
approaches.

One of the factors that has led to this improvement
is the incorporation of additional knowledge (language



modeling) in an LVCSR framework. The results that we
have presented used a bigram language model trained on 2
million words of conversational speech. If we had
switched domains to a different type of input where the
langnage model was no-longer a good match to the
observed data, it is not clear how much additional
improvement this technique will add. Rapid adaptation of
language model is a current area of research that is aimed
at solving this limitation.

The N-best implementation is straightforward and
has the advantages that additional knowledge sources can
be easily incorporated into the scoring algorithm (e.g.
word and phone duration modeling, N-gram language
models). However, we have found that for conversations
speech (with a high word-error rate), that there are signifi-
cant number of times when the correct word does not
appear in the N-best list. For applications that require high
probability of detection with corresponding high false-
alarm rates, then a direct search of a word-lattice [2] might
lead to a better implementation of the above algorithm.
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