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ABSTRACT

Utterance verification represents an important technology

in the design of user-friendly speech recognition systems.
This paper addresses the issue of robustness in utterance
verification. Four different approaches to robustness have
been investigated: a string based likelihood measure for
the detection of non-vocabulary words and “putative” er-
rors, a signal bias removal method for channel normaliza-
tion, on-line adaptation technique for achieving desirable
trade-off between false rejection and false alarms, and a
discriminative training method for the minimization of the
expected string error rate. When these techniques were all
integrated into a state-of-the-art connected digit recogni-
tion system, the string error rate was found to decrease by
up to 57% at a rejection rate of 5%. For non-vocabulary
word strings, the proposed utterance verification system re-
jected over 99.9% of extraneous speech.

1. INTRODUCTION

During recent years, it has become increasingly essential to
equip speech recognition systems with the ability to accom-
modate spontaneous speech input. Although this provides
a friendly user-interface, it poses a number of new problems,
such as the inclusion of out of vocabulary words, false starts,
disfluency and acoustical mismatch. In these situations, a
speech recognition system must be able to detect and rec-
ognize the “keywords” and reject the “non-keywords.” Rec-
ognizers equipped with a keyword spotting capability allow
users the flexibility to speak naturally.

Significant progress has been made in keyword spot-
ting for unconstrained speech using hidden Markov mod-
eling (HMM). The issue of constructing a suitable_filler (or
garbage) model has been extensively studied by Rose and
Paul [5], Wilpon et al [7] and others. A filler is usually
modeled with a structure of a whole word, a monophone, a
triphone, or a broad phonemic class.

Several studies have focused on the selection of appropri-
ate features for keyword spotting (e.g., Ll]) Conventionally,
the likelihood score corresponding to the best Viterbi path
is typically the most important feature for verification es-
pecially when normalized by the score of the filler model.
Further enhancement and feature reduction can be achieved
F}j linear transformation or discriminative feature analysis
6].
As a generalization to keyword spotting, utterance ver-
ification attempts to reject or accept part or all of an ut-
terance based on a computed confidence score (e.g., [6]).
This is particularly useful in situations where utterances
are spoken without valid keywords or when significant con-
fusion exists among keywords which may result in a high
substitution error probability. In general, to deal with these
types of problems, recognizers must be equipped with both
a keyword spotting capability to correctly recognize key-
words embedded in the utterance, and with an utterance
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verification capability to reject utterances that do not con-
tain valid keywords and utterances that have low confidence
scores.

An important task in keyword spotting and utterance
verification is the selection of an appropriate operating point
(or critical threshold) to provide a desirable combination of
Type I error (false rejection) and Type I error (false alarm).
In this paper, we will demonstrate that utterances recorded
under different environmental conditions require different
operating points in order to satisfy an optimality criterion.
Further, 1t will be shown that a small deviation in the se-
lected operating point could result in severe changes in the
overall performance of the verification system. This criti-
cal issue raises the important question of how to maintain
“robustness” during verification. Robust verification is a
subject that demands considerable attention and is the fo-
cus study of this paper.

2. DATABASES AND BASELINE SYSTEM

In order to assess the robustness of the varions rejection
techniques presented in this paper, the performance of two
connected digits data sets was evaluated. Both data sets
were recorded over telephone lines, using two electret and
two carbon button microphones. Speech was transmitted
over a long-distance telephone network which was either all
analog, all digital or a mix, depending on the region.

o The first data set was collected from two regions,
namely, Long Island and Boston, over a digital T1 in-
terface. Digit strings of lengths 10 to 16 digits were
collected from 250 adult talkers. Approximately half
of the speakers were used for training the HMMs and
the other half for testing. The testing data set which
consists of 2842 strings will be referred to as DB1.

o The second data set was collected from five re-
gions within the United States, namely, Long Island,
Chicago, Boston, Columbus and Atlanta. Each re-
gion consisted of 100 adult talkers (50 males and 50
females), each speaking 66 connected digit strings from
a predefined list {11 digit strings for each of the length
two through seven). A subset of this database consist-
ing of 7073 strings was assigned for testing. This data
set will be referred to as DB2.

In order to provide non-keyword utterances for train-
ing and verification, phonetically-rich sentences were used.
About 3000 sentences were used for training and another
3000 to 6000 sentences were added to DB1 and DB2 for
testing.

The front-end process of the recognition system utilized
12 LPC liftered cepstral coefficients, along with a normal-
ized energy feature. The combined feature vector was aug-
mented with its first and second order time derivatives, re-
sulting in a vector of 39 dimensions per frame.

Ea,c%l keyword (i.e., digit) was modeled by a left-to-right
continuous density HMM. Training included estimating the
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mean, covariance and mixture weights for each state using
maximum likelihood (ML) estimation. For each keyword
model, a digit-specific anti-keyword model was also trained
(details will be provided in the next section). Aside from
keywords and anti-keywords, we also introduced a general
acoustic filler model, trained on non-digit speech data, and
a background/silence model trained on the non-speech seg-
ments of the signal. Therefore, a total of 24 models was
used, each consisting of ten 16-mixture states with the ex-
ception of a single state silence model.

A two-pass strategy was adopted consisting of recogni-
tion followed by verification. In the first pass, recognition
was performed via a conventional Viterbi beam search al-
gorithm within an HMM framework. In the second pass,
an utterance based confidence score was computed and ap-
plied for verification. The baseline string recognition perfor-
mance when testing on DB1 with known length grammar
and DB2 with unknown length grammar was 91.0% and
84.5%, respectively.

Following recognition, an input utterance was segmented
into a string of keyword hypotheses. For each keyword
segmentation, a likelihood score was also obtained for the
corresponding anti-keyword and filler model. A confidence
score based on a likelihood ratio test was then performed
and the utterance was either accepted or rejected.

3. DIGIT BASED VERIFICATION

Starting with four sets of HMMs, namely, 11 digits {Ax},
11 digit-specific anti-keywords {A}, silence/background A,
and filler Ay, digit verification 1s carried out by testing the
null hypothesis that a specific digit exists in a segment of
speech versus the alternative hypothesis that the digit is
not present. Based on a likelihood ratio test, the digit
is accepted or rejected if the log likelihood ratio Lix(O|A)
lies above a specific verification threshold 74 (here A =
{’\k}1 {/\“}’ As, Ag)

In this study, we considered several different formulations
for the alternative hypothesis, two of which will be pre-
sented in this section. The first choice is simply to use the
general acoustic filler model Ay which is digst independent.
This is trained using non-digit extraneous speech and is the
same for all digits. The likelihood for the alternative hy-
pothesis is defined as

G (0; A) = log[p(O|As)]. (1

This type of formulation is believed to improve discrimina-
tion between keywords and out of vocabulary words.

The second choice for the alternative hypothesis is to in-
troduce a digit-specific anti-keyword model to provide bet-
ter detection of near-misses in digit recognition. Clearly,
there are many strategies for constructing such models, such
as using the likelihood of all competing digits or construct-
ing additional digit-specific anti-keyword models, {A}x, is
trained on all digits except for digit k. This paper will only
discuss the latter type since it provided the best results.

In order to provide improved discrimination between key-
word and non-keyword models as well as reasonable detec-
tion of putative errors, the likelihood of the alternative hy-
pothesis based on the anti-digit model was formulated as

1 1 1
G (0; M) = log [5 exp{nG(0; A)}+5exp{nt)(0; MY,

(2)
where Gf)(O; A) = log[p(O|Xk)] and 7 is a constant. Fig-
ure 1 gives the equal error rates (i.e., Type I = Type II)
for all the eleven digits when utilizing a likelihood ratio
score based on either G'ia)(O;A) or Gil)(O; A). Clearly, for

almost all digits, it is safe to conclude that digit-specific
anti-keywords are somewhat complementary to a general

acoustic filler model. Combining the two measures in a ge-
ometric average has resulted in a reduced error rate. A
similar trend was found when plotting the minimum total
verification error (i.e., Type I plus Type II) for all digits.
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Figure 1. Equal error rates for the digits using likelihood ratio
scores based on Gil)(O; A) and Gf)(O; A).

Throughout the rest of the paper, digit verification will
be conducted using a likelihood ratio test with the anti-digit

function Gf)(O;A) (= Gx(0O; A)).
4. UTTERANCE BASED VERIFICATION

There are several advantages is using utterance verification
(or rejection) in connected digits recognition. The first is
verifying whether the recognized digit string is 2 »alid digit
string. %‘his enables rejection of strings which contain non-
vocabulary words or noise. The second is verifying whether
a valid digit string is a correct digit string.

Two approaches for utterance verification have been eval-
uated in the study. In the first approach, the utterance
confidence measure is based on individual digit scores, such
that an utterance is rejected if the test of any detected digit
q

SU(0;A) = LRe(054) < 74, (3)

where LR (O;A) = g4(0; A) — G4(O; A) and gq(O;A) =
log[p(O|Ag)]- (i-e., reject if any one detected digit falls below
the operating point, rqﬁ.

The second approach for string-based verification com-
putes an utterance based confidence score using a geometric
average of all detected digits. Thus, for an N-digit string

N
SD(0;4) = ~log[ 1+ 3 exp{—r- LR(O;A)}]%, ()

q=1

where &k is a constant. There are two advantages of this
measure compared to S(l)(O; A). First, it provides string
verification statistics based only on one distribution rather
than one per digit. This eases the computational effort
when conducting on-line adaptation as will be discussed in
section 5.2. Second, this measure acknowledges the contri-
butions of all the digits within a given string based on the
selected value of .

Experiments conducted using the two string-based ver-
ification functions defined in equations (3) and (4) have
consistingly demonstrated a lower error rate when using
5(2)(0; A) at any operating point. When testing on DB2,
the equal error rates for S(‘)(O; A) and S(z)(O; A) were at
2.5% and 2.3%, respectively. This amounts to a reduction
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of 8%. The geometric function S@(0; A) (= S(0; A)) will
be used in all remaining experiments.

5. ROBUST UTTERANCE VERIFICATION

In order to evaluate the robustness property of our rejection
scheme, further experiments have been conducted with data
set DB2. This data set can be considered as a case of “mis-
matched” condition since it was recorded in a completely
different environment than the training corpus. Figure 2
shows a plot of the combined Type I and Type II errors (in-
cluding non-vocabulary words) for the two data sets. Three
remarks can be made. First, the minimum error rate point
is different across the two data sets. For example, DB2 has
a minimum at an operating point of 2.6 whereas DB1 has a
minimum at about 3.2. Setting the operating point to 3.2
causes the total error rate for %32 to become 7.8% rather
than 6.8% (i.e., an increase of about 15%). Second, DB2
has a higher error rate than DB1. This is due to an en-
vironmental mismatch between the training model and the
testing data. Third, it appears that DB2 is more affected
by changes in the operating point than DB1. For example,
if an original threshold at 3.2 is raised by, say, 25% to 4.0
then this causes the combined error rates for DB1 and DB2
to increase to 4.3% (ie., +12%) and 11.7% (i.e., +50%),
respectively.

-
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Figure 2. Total verification (Type | plus Type Il) errors for
DB1 and DB2.

The following sections will discuss three different ap-
proaches to robustness, namely, signal bias removal (SBR),
maximum a postertori (MAP) on-line threshold adaptation

and discriminative training based on minimum classification
error (MCE).

5.1. Signal bias removal (SBR)

The SBR method is an iterative procedure which minimizes
the effects of unknown adverse conditions that contaminate
speech. It is based on a formulation that aims at separating
two processes, one being the speech signal and the other is
what we call a bias process. The reader is referred to [4] for
further details of this method.

Figure 3 shows the string recognition accuracy as a func-
tion of rejection rate when testing on DB2 with and with-
out the introduction of SBR. At a rejection rate of 5%, the
string accuracy is improved from 87.4% to 89.2% (improve-
ment from 93.6% to 93.9% was obtained for DB1).

5.2. On-line threshold adaptation

The performance of an utterance verification system is
la;%ely dependent on the selection of an appropniate crit-
ical threshold. In previous sections, thresholds have been
set according to a predefined criterion, such as to minimize
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Figure 3. String recognition performance as a function of re-
jection rate for DB2 when introducing SBR.

the combined Type I and Type II errors or to achieve an
equal error rate. Although this can almost be guaranteed
for an evaluation set, e.g., DB1, the same criterion may not
be satisfied when dealing with an environmental mismatch
between the training and the testing data, such as when
testing on DB2.

In this study, we have explored several different tech-
niques for on-line adaptation based on neural networks, gra-
dient descent and MAP estimation. Details of these meth-
ods and the results will be provided elsewhere. In this sec-
tion, we will only discuss the MAP approach to demonstrate
on-line adaptation.

The histograms for the string likelihood scores,
5(0; A)|oec, and S(O; A)jogc,, are approximated by two
single Gaussian densities with means, uz, and pn,, and
variances, ‘7%11 and crf,o. Assuming that the mean of each
histogram is a random variable with both a prior Gaussian
distribution of a known variance af,, and a conjugate prior

which is also Gaussian of mean p and variance o2, then the
MAP estimate of the mean, f, is

2
oy u
o2 +no2"’

n02

il o (5)
where n is the number of observations and T is the sample
mean [3].

In our study, the prior variance a'f, for the distributions
was 10 times larger than their respective initial variance
estimates. The mean of each a class of distribution was
updated using equation (5). The update was conducted at
every 40 string scores. It was established that about 30-50
scores were necessary to obtain stable parameter estimates.
It was also found that applying the same formulations pre-
sented in equation a&?) to update the variances helped in
improving the overall performance of the verification sys-
tem. Thus, the variance of each distribution was updated
using a weighted average of the prior variance and the sam-
ple variance.

To explore robustness, the initial estimates of the means
of the prior distributions were varied to allow the operating
point to artificially change between 1 and 5. The operating
point was adjusted following MAP adaptation to obtain a
minimal total of Type I and Type II errors. Figure 4 shows
the variation of the total error before adaptation and after
supervised and unsupervised adaptation. Two interesting
features can be concluded from this plot. One, the dif-
ference between supervised and unsupervised adaptation is
very minimal. Two, the combined error rate is rather unaf-



fected by the setting of the initial parameters resulting in a
robust verification system.
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Figure 4. Combined Type | and Type Il error for supervised and
unsupervised threshold adaptation via MAP estimation using
data set DB2.

5.3. Discriminative training

A different approach to improving the robustness of utter-
ance verification systems is to employ discriminative train-
ing. This section describes the application of string-based
MCE training, in the framework of the generalized prob-
abilistic descent (GPD), to utterance verification. Further
details of the MCE/GPD method is given in [2]
Throughout all our experiments, MCE/GPD was only
applied in training the filler and the keyword models. The
digit-specific anti-keyword models were not trained with
this technique. Figure 5 shows the two histograms for the
in-class/out-class string likelihood scores when applying ML
training (dotted lines) alone and followed by MCE/GPD
training (solid line) using DB1. Clearly, the discriminative
training technique has provided a better separation of the

two histograms, a feature which is more apparent in the left '

histogram representing the incorrect class.

0.08

Q
Log Likelihood Rato

Figure 5. Histograms showing the distribution of the string
likelihood scores before and after GPD.

Naturally, since the histograms of the string likelihood
scores are less overlapped than those previously obtained
with ML training, a decrease in the error rate would be ex-
pected. Introducing MCE/GPD training over SBR process-

ing, at a rejection rate of 5%, resulted in an improvement
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in the string verification performance from 93.9% to 96.1%
for DB1 and from 89.2% to 90.3% for DB2.

6. SUMMARY

This paper described a robust utterance verification system
for connected digits recognition. A digit based likelihood
ratio combining the scores of keywords, anti-keywords and
filler models was found to be effective in detecting and re-
jecting non-vocabulary words and, in some instances, re-
ducing putative errors.

To perform utterance verification, a string-based likeli-
hood measure was proposed based on a geometric average
of the digit likelihood ratios. This measure has the advan-
tage of being able to deal with a single set of histograms and
providing a small improvement over standard techniques for
utterance verification. »

Table 1. String recognition performance at a rejection rate
of 5%. The verification system included the string based
likelihood measure, SBR, unsupervised MAP adaptation and
MCE/GPD training.

Dataset | Before (%) | Alter (%) | Improv. (%)
DBI1 91.0 96.1 56.7
DB?2 84.5 90.3 37.4

The issue of robustness in utterance verification was ex-
amined in this study. It is demonstrated that a verification
system may not perform adequately under all environmen-
tal conditions. Different operating points were found nec-
essary in order to establish a desired combination of false
alarms and false rejection. Different methods were investi-
gated for robustness, namely, SBR, MAP estimatation and
MCE/GPD training. When all of these methods were inte-
grated into the recognition system, a reduction in the string
error rate was achieved up to about 57% (see table 1). The
same system also achieved over 99.9% correct rejection of
non-vocabulary sentences.
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