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ABSTRACT

A procedure is proposed for verifying the occurrence of
string hypotheses produced by a hidden Markov model
(HMM) based continuous speech recognizer. Most existing
procedures verify word hypotheses through likelihood ratio
scoring procedures computed using ad hoc approximations
for the density of the alternative hypothesis in the denom-
inator of the likelihood ratio statistic. The discriminative
training procedure described in this paper attempts to ad-
just the parameters of the null hypothesis and the alternate
hypothesis models to increase the power of a hypothesis test
for utterance verification. The training procedure was eval-
uated for its ability to detect a twenty word vocabulary in
a subset of the Switchboard conversational speech corpus.
Experimental results show that the use of this procedure
results in significant improvement in the word verification
operating characteristic, as well as an improvement in the
overall system performance.

1 INTRODUCTION

This paper describes a procedure for verifying the occur-
rence of vocabulary words in continuous speech utterances.
The work addresses a problem that is common to many
speech recognition applications including telecommunica-
tions based speech recognition services. Since it is gener-
ally very difficult to design a speech recognition application
so that all users’ utterances are constrained to be within a
well defined domain, it is necessary to have a mechanism
for dealing with unexpected input from the user.

Unexpected input can appear for many tasks in many
different forms. Techniques for verifying decoded vocab-
ulary words and detecting out-of-vocabulary words have
been proposed for dictation tasks [1], dialog tasks [2], com-
mand spotting [3], and keyword spotting in conversational
speech [4, 5, 6]. The motivation for many of these tech-
niques comes from a hypothesis testing procedure known
as the likelihood ratio test (LRT). The application of the
LRT is described in Section 2 as involving a decision rule
which is based on the ratio between the likelihood of a de-
coded vocabulary word in context, referred to as the null-
hypothesis model, and the likelihood of an alternative hy-
pothesis model.

There have been many attempts to implement likelihood
ratio scoring procedures using various different ad hoc ap-
proximations for the density of the alternative hypothesis in
the denominator of the likelihood ratio statistic. One com-
mon approach to forming the alternative hypothesis has
been to run a network of hidden Markov subword acoustic
models in parallel with the word based search [7, 1, 4, 2].
However, except for [4] and [6], there is no mechanism in
any of the existing systems to design the system accord-
ing to a criterion which is directly related to the ability of
the system to verify hypothesized keywords. The training
procedure summarized in Section 3 attempts to adjust the
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parameters of the null hypothesis and the alternate hypoth-
esis models to increase the power of the hypothesis test.

2 VERIFYING WORD OCCURRENCES IN
CONTINUOUS SPEECH UTTERANCES

The proposed procedure, in its simplest form, provides a
mechanism for hypothesis testing. The manner in which
it is applied to testing whether or not a particular vocab-
ulary word was uttered as part of a continuous speech ut-
terance is described in Figure 1. This is a two stage pro-
cedure which both generates a hypothesized word occur-
rence and also verifies the word occurrence using a sta-
tistical hypothesis testing procedure. The hidden Markov
model (HMM) based continuous speech recognition (CSR)
“target network” in Figure 1 takes as input a sequence of
T mel-frequency cepstrum feature vectors ¥ = y1,...,yr
representing a speech utterance which may contain both
within—vocabulary and out—of-vocabulary words. The out-
put of the CSR target network includes the labels associated
with both the hypothesized keyword and the non-keyword
“filler” models.
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Figure 1: A speech recognition system with the capa-
bility for verifying the word hypotheses produced by a
continuous speech recognizer. A word hypothesis W¢
is shown decoded in the context of surrounding models
FI.. An “alternate network” exists only to generate the
alternative hypotheses for the statistical likelihood ratio
test.

The system in Figure 1 relies on a likelihood ratio test
(LRT) to verify the hypothesized keyword. An LRT is a
statistical hypothesis test which is designed to determine
whether or not a sequence of feature vectors were generated
by a given family of probability densities. The form of the
density p(Y | A) is assumed to be known. For example, p()
might correspond to a hidden Markov density, and A might
correspond to the set of HMM parameters. The likelihood

ratio test

p(Y 1 X°) 1)
p(Y | AT)
tests the hypothesis that the sequence of observations Y was
generated by the model A° corresponding to the hypothe-
sized vocabulary word W versus Y having been generated

by a model A! corresponding to the alternate hypothesis
W7'. The “alternate network” shown in Figure 1 exists only

L(Y, A% AT =
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to provide the probability p(Y | AY) of the feature vec-
tors for the alternative hypothesis W7 corresponding to the

target hypothesis W<. The alternate hypothesis can be
parameterized in many ways. Section 4 describes a prelimi-
nary set of experiments for verifying target word hypotheses
using simple alternate hypothesis models.

3 A TRAINING PROCEDURE FOR
IMPROVING THE POWER OF
HYPOTHESIS TEST

There are several problems with using the likelihood ratio in
Equation 1 to test the hypothesis that a word was spoken in
a given utterance. The first problem is that the model pa-
rameters for a particular word are not known, but must be
estimated from training data. The second problem is that,
for almost any modeling problem, the assumptions concern-

ing the form of the density p(Y | /\C) are only approximate.
It is well known in the hypothesis testing literature, that as
the modeling assumptions become less accurate, the power
of the test shown in Equation 1 rapidly degrades. Third, it
is unclear as to what class of alternatives should be used for
specifying the alternative model. The proposed procedure
provides a mechanism for dealing with these problems. A
training technique is described for adjusting the parame-
ters A° and A’ in the likelihood ratio test to maximize a
criterion that is directly related to Equation 1. The notion
behind the method is that adjusting the model parameters
to increase this confidence measure on training data will
provide a better measure of confidence for verifying word
hypotheses during the normal course of operation for the
service.

The training criterion adjusts model parameters to min-
imize a function of the logarithm of the inverse of the like-
lihood ratio test given in Equation 1:

Sc(Y) =log P(Y | A') —log P(Y | X©). 2)

Keyword hypotheses corresponding to both actual keyword
utterances (Y € C: true hits) and to imposter utterances
SY € I: false alarms) are presented to the training proce-

ure. The goal is to decrease the weighted average value
of Sc(Y) for true hits (Y € C) and to increase the average
value of Sc(Y') for false alarms (Y € I).

In practice, the distance in Equation 2 is approximated
for a hypothesized keyword by first obtaining the sequence
of states that were most likely to have generated the de-
coded observation vectors for that word ¥ = #,...,dr.
Using the Viterbi algorithm, one can obtain the sequence
of states for both the correct and imposter models ©¢ =
6¢,...,0% and ©f = 8{,...,0% respectively. The local log
probability of an observation vector : for state 8, is given
as log b, (#:) = log p(§: | 6, A). A local log likelihood ratio
distance can be defined as

d(ge) = log b1 (§¢) — log boc (4) - 3
The word based log likelihood ratio distance Sc(Y) in
Equation 2 can be approximated using these local distances
as
T
D(Y)=) d(F). (4)
t=1
A gradient descent procedure is used to iteratively adjust
the model parameters as new utterances are presented to
the training procedure. An error measure corresponding to
the error measure used for generalized probabilistic descent
is used to provide a well-behaved model estimation proce-
dure whose estimation error is well correlated with word
verification performance [8]. A word level error,

L(Y,A) = (5(Y, C, 1)D(Y)), )
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is used here where £(z) = m, and

1 YeC
-1 YelI (6)
In Equation 5, A = {A°, A’} represents both the target
word model and alternate word model parameters. The in-
dicator function §(Y, C,I) in Equation 6 dictates that the
average of the distance in Equation 3 be minimized for ut-
terances Y corresponding to correct hypotheses and maxi-
mized for imposter utterances.

The observation probabilities, bi(), are defined as mix-
tures of Gaussians of the form

8(v,¢,1) = {

M

bi(de) = Y cisfis(F)

1=1

(M

where ¢;,; is the mixture weight for the jth mixture Gaus-
sian and f;;(#:) are Gaussian densities with diagonal co-
variance matrices. This implies that the fi ;(#:) are com-
pletely defined by their means u.xl[k] and standard de-
viations ¢; ;[k], where i = 1,..., M, and k = 1,..., K.
Hence, the total set of parameters to be estimated are
Ac ={cf;, ul;[K],oC;[k]} corresponding to the correct class
models, and A; = {c{ j, u/ ;[k], o/ ;[k]} corresponding to the
imposter or alternate class models.

For any parameter ¢; associated with a state i of ei-
ther the correct or alternate hypothesis model the gradient
VL(Y, A) of the error measure defined in Equation 5 can be
written in terms of the partial derivative

OL(Y, A) OL(Y,A) dD(Y) )
38 9D(Y) ¢ )

T dlog b; (§:)
=>_ (D(Y))(1 - &(D(Y)))n(6¢, 6%, Y)—g(;".—y‘—(-")

t=1

(10)
where
1 YecC,i=¢
n(8¢,8,5,Y) = { 7! ;g’c"z‘;‘fg (11)
-1 Yeli=#

The indicator function n(8C,8{,i,Y) defined in Equa-
tion 11 defines the direction of the gradient depending on
whether the utterance corresponds to a correctly hypoth-
esized keyword or a false alarm and whether ¢; is a pa-
rameter from a correct or alternate hypothesis model. The
expressions for the partial derivatives of log b(§:) when b;()
is of the form given in Equation 7 can be found in many
references including [8, 9, 10].

Figure 2 illustrates how the discriminative training pro-
cedure is-applied. First, one or more word hypotheses are
generated along with the associated word endpoints by the
CSR target network. Second, the word hypothesis decoded
for an utterance is labeled as corresponding to an actunal
occurrence of a vocabulary word (true hit) or a false alarm.
Third, the distance given in Equation 2 is computed using
the probabilities estimated from the target and alternate
hypothesis models. Finally, the gradient update shown in
Figure 2 is performed on the expected error E{L(Y, A)} as

Ans1 = An — eVE{L(Y,A)}, (12)

where ¢ is a learning rate constant and the expectation in
Equation 12 is computed by summing over all observation
vectors in the training set labeled as keyword hypotheses.
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Figure 2: Block diagram illustrating a gradient descent
based training procedure for verifying hypothesized vo-
cabulary words decoded in continuous utterances.

4 EXPERIMENTS

The principal goal of this work was to demonstrate the ef-
fectiveness of discriminative training techniques in verify-
ing word hypotheses generated during continuous speech
recognition. The purpose of the experiments described in
this section was to accomplish three things. First, they
attempted to validate the basic notion that, using these
techniques, it is possible to increase the average “separa-
tion” between correct and imposter keyword hypotheses ac-
cording to a likelihood ratio distance of the type given in
Equation 1. Second, the experimental results give insight
into how the alternate word hypothesis models; or “anti—
keywords”, should be parameterized for best performance
on the conversational speech task described below. Finally,
we can measure the effect of these techniques on the per-
formance of the entire system which includes both the CSR
network and the word hypothesis verification procedure. It
is hoped that verifying word hypotheses produced by the
recognizer will allow us to simplify the structure of the CSR
network without sacrificing speech recognition performance.

The experiments were performed according to the follow-
ing procedure. First, maximum likelihood hidden Markov
models were trained for a tied Gaussian mixture continu-
ous speech recognizer from the “Credit Card” subset of the
Switchboard conversational speech corpus [11]. A vocabu-
lary of twenty keywords, selected from a total vocabulary
of approximately 2200 words, was used in the word verifica-
tion experiments. The keyword vocabulary was comprised
of the words account, american_ezpress, balance, bank, card,
cash, charge, credit, credit_card, discover, dollar, hundred,
interest, limit, mastercard, money, month, percent, twenty,
visa.

Second, in order to generate the keyword hypotheses nec-
essary for the model adjustment procedure described in
Section 3, speech recognition was performed on 7283 ut-
terances, also taken from the Switchboard corpus. A very
simple null grammar CSR network was used including the
keyword vocabulary and a network of 43 subword models to
represent out—of-vocabulary utterances. Strings containing
either true or false decodings of keywords were input to dis-
criminative training along with strings containing alterna-
tive hypothesis models decoded from the same utterances.
This resulted in a total of 1225 word hypotheses correspond-
ing to correct keyword occurrences {ranging from 20 occur-
rences for the keyword twenty to 416 occurrences for the
keyword card) and 2725 word hypotheses corresponding to
“imposters” or incorrectly recognized keywords.

The observation densities in the continuous speech recog-
nizer shown in Figure 2 were tied Gaussian mixtures defined
over mel-frequency cepstrum and difference cepstrum ob-
servation vectors. This implies that a single set of M Gaus-
sian densities in Equation 7 are tied to all HMM states in
the network. Each vocabulary word was expanded accord-
ing to tri-phone subword acoustic units. Triphones were
represented by three state left-to-right HMM?’s. In the
word hypothesis verification procedure, the keyword based
tri-phone HMM parameters, Ac, were reestimated accord-
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Figure 3: Average values of a a smooth function of D(Y),
as defined in Equation 4, computed separately for cor-
rect and imposter keyword hypotheses.

ing to the gradient defined in Equation 10.

An alternate hypothesis model was defined for each key-
word based tri-phone. Each alternate model was a single
state mixture Gaussian. Because of the relatively small
amount of training data available for most keywords, it was
necessary to tie all alternate models in each keyword. As a
result, an anti-keyword model in these experiments corre-
sponds to a single mixture of Gaussians. Anywhere from 8
to 128 mixtures were used per keyword. Finally, an addi-
tional effort was made to reduce the total number of alter-
nate hypothesis model parameters by tying all parameters
so that A; corresponds to a single pool of mixtures.

The training procedure is meant to adjust model param-
eters to increase the average likelihood ratio for utterances
where a keyword is present, and decrease the likelihood ra-
tio for utterances where a keyword hypothesis was gener-
ated by the recognizer but in fact contained no keyword.
To verify that the procedure does operate to accomplish
this goal, plots of a smooth function of D(Y), as defined
in Equation 4, averaged over the training and test sets and
computed after each iteration of the training procedure, are
given in Figure 3. The curves shown in the figure represent
the average 1 — {(D(Y)) computed from utterances of the
keyword money. The solid curves correspond to the train-
ing utterances and the dashed curves correspond to the test
utterances. It is clear from Figure 3 that the relative sep-
aration between correct and imposter keyword hypotheses
improves as a result of model adjustment over both the
training data set and test data set.

Figure 4 displays operating characteristic curves which
describe the performance of the second stage word hypothe-
sis testing procedure. Both plots represent the performance
as the probability of correct detection of a keyword hypoth-
esis generated by the recognizer versus the probability of
false acceptance of an imposter keyword hypothesis. Oper-
ating curves for each keyword are computed separately and
averaged over all twenty keywords to give the curves shown
in Figure 4. The three different curves display the oper-
ating characteristics for three separate scoring procedures.
In the absolute scoring procedure, the duration normalized
likelihood scores obtained from the speech recognizer were
used for scoring. The maximum likelihood performance was
computed as the log likelihood ratio between the vocabulary
word model and an alternate model consisting of Gaussian
mixtures trained using maximum likelihood estimation from
imposter utterances in the training data. Finally, the last
set of curves were computed as the log likelihood ratio be-
tween the target word models and the anti-keyword models
obtained after eight iterations of the discriminative train-
ing procedure. The plots on the left and right of Figure 4
describe the operating characteristics using alternate mod-
els with 16 and 128 mixture components respectively. It is
clear from the figure that the discriminative training proce-
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Figure 4: Word hypothesis testing operating characteristic curves computed for the test utterances taken from a
subset of the Switchboard conversational speech corpus. The plot on the left corresponds to an alternate hypothesis
model containing 16 component Gaussian mixtures and the curve on the right corresponds to a 128 component

mixture alternate model.

dure results in significant improvement in word verification
performance in both cases.

Additional experiments were performed to investigate the
use of a single tied set of Gaussians to represent the alter-
nate model for all 20 keywords. While a slight improvement
in the average word verification operating characteristic was
obtained, the effect was small in comparison to word de-
pendent alternate models. Adjusting target model parame-
ters with the discriminative procedure was also investigated.
Here again, slight performance improvement was obtained,
but the effects were minor when compared with the effects
of alternate model adjustment.

It is important to consider the total performance of the
entire system shown in Figure 1 which includes both the
CSR network and the second stage word hypothesis verifi-
cation procedure. The CSR network alone produced 2095
false keyword detections for 1.53 hours of speech in the test
set amounting to a total of 68 false alarms per keyword per
hour for the 20 keyword vocabulary. Furthermore, the av-
erage keyword detection rate was 88.7An operating point
for the combined system can be obtained by weighting the
figures from the CSR network with the operating character-
istic of the discriminatively trained word verification system
shown on the right in Figure 4. For example, at 10% prob-
ability of false alarm, a combined system operating point of
76.2% probability of detection at 6.8 false alarms per key-
word per hour is obtained. This is important because the
performance is roughly equivalent to the performance ob-
tained from a much higher complexity CSR system with no
word hypothesis verification [11].

5 SUMMARY

One interpretation of the proposed training procedure is
that it modifies the definition of the target and alternate
hypothesis parameter spaces in order to increase the power
of a hypothesis test defined in 1. As such, this proce-
dure should be applicable to any detection problem where
representative exemplars of target and alternate hypothe-
sis classes can be obtained from training. The procedure
was presented here as part of a system that hypothesizes
the occurrence of keywords in continuous speech and ver-
ifies the occurrence of the keywords through a statistical
hypothesis test. There are two contributions related to the
new training procedure: The first is a mechanism for ad-
Jjusting model parameters to optimize a criterion which is
directly related to the hypothesis test used for verifying a
keyword occurrence. The second is the use of a set of word
dependent alternate hypothesis models which are designed
specifically for the purpose of representing the range of key-
word false alarms that are expected to be generated by the
HMM based CSR. target network.

[10]

(11]
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