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ABSTRACT

In this paper we present the development of the
RGSKAe, a new algorithm for designing vector
quantizers. The main features of this algorithm are the
following:

- Due to its stochastic nature it avoids being trapped in
poor local minima;

- Initial codebook is not needed; the codevectors move
away from the gravity centre of the training vectors
towards their final position;

- Source coding and channel coding are jointly
optimized to obtain a codebook robust against different
levels of the transmission noise;

- The resulted codebook always performs as well or
even better than existing codebooks designed for noisy
or noiseless channels;

- The computational complexity is only slightly higher
than that of the most widely used K-means algorithm;

- The Bootstrap sampling technique can be successfully
applied in case of a large training set;

- The method is suitable for parallel implementation.

1. INTRODUCTION

As a means of data compression, vector quantization
has been widely used in various speech and image
coding problems in the past decade. In practical
situations, as signals are transmitted through noisy
channels, the sent binary index may change during the
transmission. Considering that binary indeces are
generally randomly associated with the codewords,
vector quantization is very sensitive to the transmission
noise. In this paper we propose a new algorithm for
designing vector quantizers that solves most of the
questions met in this area. The objective is to design a
vector quantizer that introduces as little distortion as
possible under various transmission conditions.

The algorithm results in a codebook where the order of
the codewords is chosen to make the codebook
intrinsically robust against channel error probability
changes. The mean distortion caused by the
transmission noise is decreased significantly. At the
same time the codebook performs well even in the
absence of channel noise. That is why we recommend
this method for nonstationary channels. Choosing
proper codewords and finding the right order are
generally problems for nonconvex optimization. The
proposed algorithm solves them in a much more
simplified way than the similar existing algorithms.

2. DESIGN OF VECTOR QUANTIZERS

Designing an M level vector quantizer means a
partition P of the vector space into M regions (S:) and
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the choice of the representative codewords (c:) for each
partition. These M codewords form the codebook C. An
optimal quantizer fulfils at the same time two necessary
conditions [1]: :

al) The partition P is optimal for the codebook C if (1.):

S ={xeR¥/d(x.c.) < d(x,c Vi = if; i=1,...M

bl1) Respectively the codebook C is optimal for the
partition P if (2.):

jd(x,ci )p(x)dx = inf jd(x,u)p(x)dx; i=1,..,M
S ueR* s,

where p(x) is the probability density function of the
input signal. If the Euclidean distance is chosen, we
call these conditions the nearest neighbour and the
centroid conditions, and bl) simplifies as follows (3.):

ij . p(x)dx

;= —
b Jp(x)dx
S;
In this paper we assume that d is the Fuclidean distance.

2.1. The K-means Algorithm

The KMA (K-means algorithm) is a deterministic
iterative descent algorithm that updates the codebook,
according by al) and bl) [2]. The data source is
defined by a finite training set and all training vectors
are taken into account at each iteration. The distortion
function decreases monotonically, it is however often
trapped in a poor local minimum far from the global
one. The result is determined by the initial codebook
and it is impossible to choose an initial codebook that
results in the global minimum. In spite of its
drawbacks, the KMA is the most widely used technique
because of its simplicity and quick convergence.

2.2. Simulated Annealing Algorithm

In case of nonconvex optimization the simulated
annealing algorithm (SA) [3] may be used to reach the
global optimum independently of the initial conditions.
Unfortunately this method is very time consuming.

2.3. The Stochastic K-means Algorithm (SKA)

The first proposed algorithm is the combination of the
KMA and the SA retaining the advantages of both. Its
main difference from the KMA is how the training set
is partitioned. For a training vector we do not assign
the region whose former representative codeword is the
nearest neighbour of the training vector, but we make a
random decision to choose a region. The probability of
assigning the jth region to the ith training vector x; is a
function of the inverse temperature B and the distance
between x; and the jth region's actual representative
codeword c,; (4.):
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P(i, ,B) = W
n=1

Of course the nearest neighbour has the greatest
probability of being chosen. The inverse temperature
increases at each iteration step (system cools down).
When the system is warm, (B is small), the probability
of choosing a region not corresponding to the nearest
neighbour is greater. As the system cools down the
algorithm becomes more and more deterministic. It was
found that the most suitable solution is to increase  as
a linear function of time. In the xth iteration (5.):
B=x/a+b. The algorithm is quite insensitive to the
choice of the parameters ¢ and b. For example, during
the simulations a=1, b=0 gave almost the same good
result as a=16, b=16.

2.4 Comparison of the KMA and SKA

Due to its stochastic nature, the SKA cannot be trapped
in poor local minima, it cannot reach the global
optimum either. Anyway, the result is very close to the
global optimum, and the SKA consistently gives better
codebooks than the KMA. The SKA is independent
from the choice of the initial codebook. In an initial
codebook consisting of a set of nullvectors all initial
probabilities are equal. After the first iteration, all
codevectors, being means of randomly selected training
vectors, are closed to the gravity centre of the training
set, and than they are progressively moved towards
their final position. This ensures a better-balanced
codebook. ’

In KMA the distortion decreases monotonically, and
the iterations stop when the distortion cannot be
improved any more, thus a local minimum is found. As
the distortion function of the SKA does not decrease
monotonically, the exit condition is reached when the
algorithm can not diminish the distortion during some
(e.g.20) iterations. The complexity of the SKA is
slighdly greater than that of the KMA due to the
computation of the probabilities for each distance. The
convergence speed depends on the temperature
schedule during iterations.- Generally the SKA needs
app. 50% more computation time than the KMA.

3. VECTOR QUANTIZERS FOR NOISY
CHANNELS

Under real conditions, due to the channel noise, the
transmitted binary indeces may change at the receiver
site. For the simulation a binary symmetric channel
with crossover probability € was assumed The probability
of receiving the index j when index i was sent is (6.):
O O

where n is the length of the binary indeces, du(i,j) is the
Hamming distance of the indeces i and j.

In real applications one bit fault per index is the most
likely error. In other words, in case of transmission
error the Hamming distance of the transmitted and
reccived binary index is wusually equals to 1.
Considering that in a traditional vector quantizer the
codewords and the binary indeces are assigned
randomly, one bit fault will cause on an average exactly
the same distortion as any other more serious fault.
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Therefore vector quantization shows considerable
sensitivity to the change of binary indeces. There are
two main ways to increase the robustmess against the
channel noise. The first is to use errorcorrection codes.
Unfortunately, this increases the bit rate. The second,
which is chosen in the present paper, is to construct an
ordered codebook. In such a codebook, indeces with
small Hamming distance belong to codewords on the
average close to each other in space. This is the reason
why the distortion caused by the most likely faults
decreases.

3.1. Generalized K-means Algorithm

In [4] Farvardin proposed an extension of the KMA for
noisy binary symmetric channels (generalized K-means
algorithm, GKMA). While the KMA tries to minimize
the distortion between the training vectors and their
representative codewords, the GKMA does this between
the training vectors and their codeword restored by the
receiver. In this case the two necessary conditions will
be the following [4]:

a2) The partition P is optimal for the codebook C if (7.):

M M
S, = {x eR* /X Pi(j/1)-d(x.c;) < T R(j/ k)-d(x,c; ) Vi = i}
=1 j=1

i=1,...M
b2) The codebook C is optimal for the partition P
(supposing the Euclidean distance) if (8.):

S/ x-plx)ax

i gpm)sjp(x)ax

We can see that the computation complexity becomes
considerably greater than that of the KMA. If the length
of the training set is k times longer than the size of the
codebook, a2) increases the computation time k/2 times
more than b2). The value of k is typically equal to 100.

3.2. Generalized Stochastic K-means Algorithm

We can easily generalize the method to the SKA and
obtain the generalized stochastic K-means algorithm
(GSKA). As the codewords move away from the gravity
centre, their correct distribution is not influenced by the
distribution of the initial codebook. Due to that, and to
other advantages mentioned above for the SKA, we
obtain a better performance than with the GKMA. We
could see previously that the increase of the
computation complexity derives mainly from 42), while
it seems less important to generalize this condition. To
reduce complexity, we define a random decision of the
membership of the training vectors in the same way as
in the SKA. The statistical properties of the channel are
taken into account only for the construction of the new
codevectors. Like in the GKMA or GSKA, each new
codevector is the weighted centroid of all training
vectors. If a training vector is associated with the ith
region according to the random decision, its weight, in
the calculation of the jth region's codevector, will be the
probability of receiving the index j when the index i
was sent. In the pth iteration (9.):

J

¢ ; i=1..,M
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where lISyll is the cardinality of Sy. As we update the
codebook only once per iteration tge computation time
remains almost the same as the SKA. Simulations show
that the reduced complexity version (RGSKA) performs
as well or even better than the original one (GSKA).

3.3. Evaluation of the GKMA, GSKA and RGSKA

To use the GKMA, GSKA or RGSKA one should know
the statistical properties of the transition channel in
advance. The joint design of the codebook and the
binary codeword assignment results in considerable
performance improvement when applied to a given
channel. In case of a channel mismatch however the
performance can be even worse than for the KMA. Let
us consider the case of a binary symmetric channel with
crossover probability €. If a small value of ¢’ is given to
the algorithm, its influence is not enough to correctly
assign binary codewords to the codevectors. If a higher
value of €° is given, the codebook will be better
organized but the average distortion in the absence of
channel noise will be worse. The reason is that because
of the greater influence of the channel error the
codewords of the codebook will be more compressed,
and their average distance will be smaller. This is why
these codebooks cannot be used for an unknown or
nonstationary communication channel, which is the
case in many practical situations (e.g. mobile
communication, underwater telephone).

C

3.4. Simulated Annealing to reorder a codebook

We have seen above that the codebook is well
organized when the average distortion between those
codevectors, whose index differs from one another by
one bit, is smaller than for any other ordering of the
same codewords. An alternative construction of a vector
quantizer for noisy channels is to reorder the codebook
given by the KMA or the SKA using an algorithm
based on simulated annealing (RSA) [5] to minimize
distortion. The codebook obtained by the RSA keeps its
performance in the noiseless case (as it contains the
same codewords only in different order) and generally
gives better protection against transmission errors.
However the construction of this codebook is
computationally expensive. -

3.5. The RGSKAe

To attain this performance with the RGSKA a high
value of € was used at the beginning of the algorithm,
which exponentially decreased later towards a small
value of v during subsequent iterations.

In the pth iteration (10.): e(p) =€, -af +v

It is important that € must decrease to reach the value
of ¥ when the algorithm stops. In simulations described
in the 6th chapter £,=0.5, 0=0.94, v=0.001 were used. ¥
has no influence on the noiseless distortion, but it helps
to keep the order of the codebook better during the final
iterations.

During the first half of the iterations a well-organized
codebook is produced with .a relatively high distortion
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in noiseless cases. In the second half the distortion
diminishes without significantly changing the order of
the codevectors as the temperature is already cold
enough. The codebook constructed in this way
(RGSKAEg) performs as well as the codebook obtained
by the RSA both in noiseless and noisy cases. The
computation time of the algorithm is only about two
times longer than the KMA.

4. BOOTSTRAP SAMPLING TECHNIQUE

The computation time of all these algorithms based on
a training set is proportional to its size. The number of
the training vectors must be at least 10-20 times longer
than the size of the codebook, but a longer training set
produces better results during applications. If a very
long training set is available, it is recommended to use
it all to construct a codebook. To reduce computational
time we successfully applied the Bootstrap sampling
technique with the RGSKAe. In each iteration only a
certain percentage of the training set is processed,
chosen randomly. After each iteration the used sub-
training set is refreshed by randomly redrawing a
certain part (10-20%) of it from the entire training set.
In this way the information of the whole training set
was used and the convergence of the algorithm was
assured at the same time.

5. PARALLEL IMPLEMENTATION

The RGSKAe can be easily implemented on parallel
hardware if needed. Both the processing of the training
set and the calculation of the new codewords can be
done in parallel. The computing processes however
should be synchronized before and after the calculation
of the new codewords.

6. EXPERIMENTAL RESULTS

The experimental results were obtained in the
application of vector quantization to 10 Line Spectrum
Pairs (LSP) coefficients for the CELP coder. In the
following are given some results for the codebooks of
256 codevectors. Fig.1.,2. illustrate the distortion of
different vector quantizers as function of the crossover
probability £ of a binary symmetric channel. By
distortion of a codebook we mean the mean distance
between a test vector and its codeword reconstructed by
the receiver. All codebooks were obtained by using the
same 25600 training vectors. In Fig.l. the testing
sequence was identical to the training sequence while
in Fig.2. we used 8000 testing vectors separated from
the training vectors. The RGSKAe has the smallest
distortion for e<1%, which is the case for real
applications. We could not trace the distortion of the
reordered codebook of the KMA with RSA as it was
identical with that of the codebook obtained by the
RGSKAe. However the RGSKAe used 13 times less
com;»utation time even for this long training set.

Fig.3. illustrates the point that by using the Bootstrap
sampling technique we can also reduce computational
time. The dashed curve gives the distortion of the
codebook obtained by RGSKAeg using 66000 training
vectors. During the construction of another codebook
we used only the first 13200 training vectors. This is
represented by the dotted curve. For the third codebook
(solid curve) in each iteration only 20% of the available



66000 training vectors (13200 vectors as well) chosen
by Bootstrap sampling technique were used. We
refreshed 20% of the 13200 vectors in each iteration.
The distortion of this codebook is only slightly higher
than the distortion of the codebook obtained using all
the training vectors in each iteration. On the other hand,
this codebook is much better than one constructed
without the Bootstrap technique, though the same
number of training vectors was used in a simple
iteration and the computational time was identical as
well. The same sequence of 8000 testing vectors as in
Fig.2. permits the comparison the two figures as well.

Fig.1 Comparison for identical testing set
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Fig4. illustrates the mean distance between the
codevectors as a function of the Hamming distance of
their indeces. For a randomly assigned codebook
(KXMA) it results a horizontal line. For the codebooks of
the GKMA we can observe that even for £€=0.3% the
codebook is not ordered. As the value of €' given to the
algorithm is increased, the codebook becomes better
ordered, but at the same time more compressed
(smaller mean distance). This is why its performance is
worse in the noiseless case.

Fig.4 Order of the codebooks
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7. CONCLUSIONS

We have presented a new simple and fast stochastic
algorithm for vector quantizer design for nonstationary
channels. We can recommend the RGSKAe in all
applications as it produces a codebook that gives little
average distortion in the absence of channel noise and a
high degree of robustness independently of channel
error probability changes and initial conditions.
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