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ABSTRACT

In this paper we focus on how to exploit the non-
linearities in speech with the main purpose of improv-
ing the prediction in speech coders. If non-linearities
are absent from speech the linear technique is sufficient,
but if non-linearities are present the technique is in-
adequate and more sophisticated predictors are called
for. In our ICASSP-94 paper [1] we gave evidence for
non-linearities in speech and presented two non-linear
short-term predictors that both were superior to the
linear predictor without quantization. In this paper
we present methods to design vector quantizers for the
non-linear predictors and investigate how vector quan-
tization of the non-linear predictors affects prediction.
Furthermore, we compare the performance of the quan-
tized non-linear predictors to the performance of tra-
ditional quantized linear predictors. The experiments
show that 10-bit VQ of the non-linear predictor leads
to similar performance as 20-bit state-of-the-art split
VQ of the LSP-parameters.

1. INTRODUCTION

This work focusses on how to improve the prediction
of speech, with the main purpose of improving speech
quality versus bit-rate in predictive coders. By improv-
ing the prediction the excitation signal will contain less
information and will therefore be easier to code at the
same bit rate. Or, the number of bits allocated to the
predictor can be lowered and leave more bits to code
the excitation with the same predictor performance.

Several different authors have reported and docu-
mented non-linearities in speech [2], (3], [1]. In [3]
physiological evidence for non-linearities in speech is
presented. Keeping that in mind and the experiments
in [4], where it was found that Gaussian noise passed
through a linear predictor produces unvoiced speech of
high quality, it seems that there is only need for non-
linear prediction of voiced speech. Accordingly, in {1] we
found that the prediction of voiced speech is improved
significantly (5 dB) with the use of non-linear short-
term predictors (see figure 1; notice that although the
non-linear predictor is short-term it is capable of re-
moving most of the pitch information).

These experiments are the work reported in our
ICASSP-94 paper [1] and were carried out without
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Figure 1: a: original speech, b: linear short-term resid-
ual, ¢: non-linear short-term residual.

quantization of the predictors to bring out the po-
tential of non-linear prediction. However, in a speech
coder the predictor must be quantized. Accordingly,
the performance of the quantized predictors should be
examined to allow a fair comparison between linear and
non-linear prediction with respect to speech coding.

Throughout this paper the prediction order P is 10
samples and the frame size L is 200 samples, i.e. 25 ms
at 8 kHz sampling frequency, which all are parame-
ter values commenly used in speech coding. Further-
more, closed test denotes evaluation of a codebook with
speech used for training, and open test denotes evalu-
ation with speech not used for training. The open test
set consists of 60 sentences in total including Danish,
British and American English, where speakers and sen-
tences differ from the training set.
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The paper is organized as follows. In section 2 and 3
the two non-linear predictors, based on the Volterra fil-
ter and the neural network, respectively, are presented.
This includes both the least squares solutions and de-
sign of vector quantizers for the predictors. Section 4
deals with experiments comparing the performance of
the quantized short-term predictors. Finally, section 5
contains the conclusions.

2. THE VOLTERRA FILTER

The first non-linear predictor is based on a second-
order Volterra filter. The prediction of the speech sam-
ple, z(n), is:

Z(n) = Hjlz(n ]+H2[$( n)]
—Zh z(n—1 +§_:Zh,‘7 z(n—1) - z(n—j)

1)

Like the linear predictor the Volterra filter is a poly-
nomial filter, but in addition to the linear part it has a
non-linear part, which in this case is the second-order
kernel. The second-order kernel was chosen as a com-
promise between the number of filter coefficients and
the prediction gain.

The least squares solution, i.e. the predictor that
minimizes the mean squared error between the original
speech, z(n), and the predicted speech, £(n), is derived
in [1]. The solution is a matrix equation (2):

(2)

where g,,, contains the parameters for Hy and Hjp.
The matrix, M, contains second, third, and fourth-
order cumulants, and the vector, m, contains sec-
ond and third-order cumulants of the time series

{I(l),I(Z), o ,:L‘(L)}

2.1. VECTOR QUANTIZER DESIGN

_opt_M m

The algorithm to generate codebooks for the Volterra
predictor is based on the LBG algorithm (Linde, Buzo,
and Gray) [6]. An obvious way to use the LBG al-
gorithm is to let the training set consist of predic-
tors derived from a speech database, use the Euclidean
distance measure between predictors when assigning
the training set to the codebook, and simply average
predictors when calculating new centroids. However,
to design codebooks that performs optimally in terms
of prediction error we use the following modifications
which ensure minimum prediction error in the various
steps of the LBG algorithm:

e The training set consists of speech frames.
¢ The distance measure between the training vec-

tors (speech frames) and the codebook (predic-
tors) is the residual energy.
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e The new centroids are calculated to minimize
the sum of the residual energies from the training
vectors assigned to the given centroid.

The two first items are straightforward. The
centroid calculation will be derived below. Let
Tk1,Zk2,---, Lk N, De the speech frames that has been
matched to the code vector (predictor) ¢, and thus will
be used in the calculation of the new code vector, cpe®.
That is the one that minimizes the sum of the residual
energies, Fg 10t, (3).
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where Ej ; is the energy of the i*? residual, E; .. s the
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and vector, respectively, of the it speech frame, T(k,i)
assigned to ¢;. The cumulant matrix and vector are the
same as in (2). The derivative of Ej ;,: with respect to
cp® can be calculated from (3) as

energy, and my; ;) are the cumulant matrix

N

OFk 1ot
3Q;:wt _ ; ( 2m(,c o+ 2_]\1(,: N )
=0
N N,
= (Zl g(k,i)) a™= ;@k,i) (4)

The new centroid is calculated from (4) as:
-1 Na
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3. THE NEURAL NETWORK
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(5)

The second non-linear predictor is based on a neural
network. Figure 2 shows the architecture of the neural
network used as a predictor. It has P input nodes, two
hidden layers with 2 nodes in each, and one output
node. Each node has a sigmoid transfer function (6),
except the output node, which is linear.

1
1+ eB=

f(2) = (6)

The argument 2 in (6) is a weighted sum of the outputs
of the preceding layer, and (3 is a constant.
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Figure 2: The Neural Network Predictor.

The least squares solution cannot be expressed ana-
lytically as for the Volterra predictor. Instead, it has
to be found iteratively, e.g. with the backpropagation
algorithm [5]. We use a minimization algorithm re-
quiring the Jacobian, which can be derived using the
idea of the backpropagation algorithm. It should be
noted that in a future speech coder no online training
of the neural network will be necessary. The predic-
tors in a codebook can simply be applied one by one
to the speech frame and finally transmit the index of
the predictor which minimizes the residual energy of
the frame.

3.1. VECTOR QUANTIZER DESIGN

Like the Volterra predictor the vector quantizer design
for the neural network is based on the LBG algorithm.
However, using the obvious scheme described at the be-
gining of section 2.1 leads to poor performance of the
codebooks. This is mainly because averaging and us-
ing the Euclidean distance measure is unsuitable here
too. When the predictor is linear these circumstances
do not affect the generated codebook to the same ex-
tent as for the non-linear predictor. The effect is much
larger on the design of codebooks for the neural net-
work predictor than on the codebook design for the
Volterra predictor. This is because the Volterra pre-
dictor is non-linear in the input (signal values) only,
while the neural network predictor is non-linear in both
input and coefficients.

To improve the vector quantizer design for the neu-
ral network predictor modifications similar to those
made in section 2.1 are introduced. The centroid cal-
culation is the only item that will be described. Un-
like the Volterra predictor in section 2.1 it is impos-
sible to express the solution analytically. Yet letting
the cost function be the sum of the residual energies
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the backpropagation algorithm or an optimization al-
gorithm can be used to calculate the new centroids.
Let zx1,Zk,2,...,2Zk N, be the speech frames that have
been matched to the code vector (predictor) ¢, and
new

therefore used to calculate the new code vector, ¢}
That is the one minimizing the cost function, Eyg tot,

™).
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where F(c,z(n)) is the output from the neural network
described by ¢ when the input is the signal samples
z(n)={z(n-1),z(n-2),...,z(n—P)}.

The performance of codebooks generated with the
obvious design method and the modified method is
shown in figure 3, where the prediction gain versus
bits/predictor, i.e. bits/25ms, for both closed and open
tests can be seen. From the figure it is obvious that

prediction gain {dB]

—— obvious method, closad test
obvious method, open test

-+~ modified method, closed test
~=-=- modified method, open test

T T
7 8

T 1
9 10

bits/25ms

Figure 3: Obvious and modified VQ performance.

the modified LBG method performs significantly bet-
ter than the obvious one. Both methods use a train-
ing set of 140 sentences in total with Danish, British
and American English utterances from female and male
speakers.

4. RESULTS

The first experiment focusses on the size of the train-
ing set. For the Volterra predictor the dependency is
strong. As the training set is varied from 24 to 210



sentences the improvement in open test prediction gain
at 8 bits/predictor is 1.6 dB. For the neural network
the dependency is weaker, still the prediction gain im-
proves 0.60 dB, while the linear predictor shows almost
no dependency. The dependency increases with the
number of coefficients (linear: 10, neural network: 26,
Volterra: 65). This confirms what should be expected:
the more coefficients the more training examples are
needed to achieve a good generalization.

The second experiment compares the performance
of the non-linear methods to traditional linear meth-
ods at equal bit rate (same number of bits/predictor).
In figure 4 the open test performance for single stage
VQ of Volterra, neural network, and linear predictors
as a function of bits/predictor can be seen. Also a two-
stage split VQ of LSP parameters is included to make
a comparison to a linear state-of-the-art predictor pos-
sible. In this experiment all predictor codebooks are
trained with 210 sentences totally, including Danish,
British and American English. The cost function used
when designing the codebooks is the same for all pre-
dictors except for the split VQ of the LSP parameters.
In that case the weighted Euclidean distance measure
between LSP parameters from [7] is used. Several in-
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Figure 4: Open test performance.

teresting points should be noted from the experiment.

e The open test performance of the non-linear
Volterra predictor degrades as the bits/predictor
exceed 8. This indicates that the codebook is a
poor generalizer.

The open test performance of the non-linear neu-
ral network predictor is superior to the open test
performance of all linear methods at any bit rate.

The open test performance of the non-linear
predictor at 10 bits/predictor is identical to
20 bits/predictor split VQ of LSP parameters.
Note, 20 bits/predictor is not shown in the figure.

Especially the last point is interesting, since a 20-bit
split VQ of LSP parameters is considered sufficient

268

for high quality speech coding. However, it should
be noted that the non-linear predictors are incapable
of removing the pitch to the same extent as without
quantization, see figure 1. Furthermore, the open test
of the neural network shows some saturation at higher
bit rates as compared to the closed test, see figure 3.
This indicates that the VQ of the neural network might
be improved.

5. CONCLUSIONS

In this paper we have presented methods to design
vector quantizers for two non-linear predictors. One
of the main results is that the non-linear predictors
require much larger training sets to generalize prop-
erly than linear predictors. While the two non-linear
predictors perform similarly without quantization, the
neural network predictor performs significantly better
than the Volterra predictor when quantization is intro-
duced. Thus, the neural network predictor is preferable
to the Volterra predictor with respect to speech coding.
The better quantization properties of the neural net-
work is largely due to the smaller number of coefficients
in the neural network predictor. Furthermore, a 10-bit
VQ of the neural network performs approximately 0.75
dB better than a 10-bit VQ of the linear predictor, and
most importantly, the performance is similar to a 20-
bit state-of-the-art split VQ of the LSP parameters as
regards prediction gain. The experiments have shown
that the performance of the quantized non-linear pre-
dictors might be improved by further work focussing
on the generalization. We are currently implementing
the non-linear neural network predictor in a low rate
speech coder.
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