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ABSTRACT

We describe a speech coder based on the intersymbol
interference coded quantizer (ICQ). The ICQ is a struc-
tured vector quantizer that can realize both boundary
and granular gains for sources with memory. It is the
quantization dual of the intersymbol interference coder
— a transmission scheme for channels with memory.
We have studied two different suboptimal ICQ code-
book search algorithms for speech coding and find that
the performance of the ICQ based speech coder is very
good at rates over 13 kbps but degrades rapidly at lower
rates.

1. INTRODUCTION

In this paper we apply the intersymbol interference
coded quantizer (ICQ) to quantize speech signals. The
ICQ (1], [2] is a new structured vector quantizer for
sources with memory which can realize both bound-
ary and granular gains [3], [4] at high rates. It is the
quantization dual of the recently developed intersym-
bol interference coder (ISI coder) [5], [6] — the com-
bined coding and precoding scheme for transmission
over ISI channels that can realize both shaping and
coding gains [3].

To use the ICQ on speech we assume that speech
is a stationary signal on a 20-30 msec interval and
the LPC filter together with the pitch predictor for
this interval describe the memory in the speech sig-
nal. The ICQ first quantizes the speech signal to a
trellis code sequence, as in the trellis coded quantizer
(TCQ) [7]. It then uses the LPC filter and the pitch
predictor to remove the memory and whiten the trel-
lis code sequence. Blocks of the memoryless sequences
are mapped to codevectors of a scalar-vector quantizer
(SVQ) [4], [8] using a nonlinear mapping [1]. The SVQ
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codevectors can now be indexed using the algorithmic
indexing algorithm described in [4], [8].

The optimal codebook search algorithm for the ICQ
is very complex — exponential in the memory-order of
the source. The simple suboptimal procedure described
in [1], [2] (see Section II) works very well at high rates.
For first-order Gauss-Markov sources at rates above 3
b/s it performs within a dB of the rate-distortion func-
tion. For higher-order sources (speech) at rate below
3 b/s this simple procedure does not perform as well.
As described in the next section, we use two different
search methods to improve the performance for speech
at rates below 3 b/s. The first method uses the same
algorithm as in [1] but uses a biased distortion metric
in place of the mean squared-error (mse). The distor-
tion metric is biased such that the (quantized) trellis
code sequence results in a smaller energy memoryless
sequence when filtered using the LPC prediction fil-
ter. This increases the probability of the trellis code
sequence being mapped to vectors inside the bound-
ary of the SVQ codebook and improves performance.
The second method performs a reduced-state codebook
search and is similar to the reduced-state sequence esti-
mation techniques used in transmission over ISI chan-
nels [9]. This method is more complex than the first
but performs better especially at rates around 1 and 2
b/s. Performance results for both these techniques at
various rates are reported in Section III and compared
with some other schemes.

2. ISI CODED QUANTIZER

2.1. Description of ICQ

In the following, it is assumed that the speech signal
{#n}5%, is the output of a source filter, H(z), driven
by an independent identically distributed (i.i.d.) inno-
vations sequence, {yn}5%;. The source filter comprises
of the normal LPC filter as well as the long-term pitch
filter. Next, consider the block diagram given in Fig-
ure 1. After scaling the source by a constant a > 0
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Figure 1: Block Diagram of ISI Coded Quantizer
(ICQ).

(zn=%n/a), the vector x = {z,}_, is quantized by an
unbounded trellis coded quantizer. The trellis code is
based on the partitioning of the lattice translate Z+1/2
into two cosets, Ag = 2Z + 1/2 and A\p = 2Z - 1/2,
in the first level of lattice partitioning. For all Unger-
boeck type trellis codes based on the above partition,
all outgoing transitions from each trellis state either
correspond to all points in A4 or all points in Ag but
not both, i.e., in each state of the trellis encoder, the
sample z,, can either be quantized to the points in A4
or Ag but not both. This fact will be exploited by the
block labeled “ISI coder” in the receiver (see Figure 1).
The quantized vector is denoted as x = {#,})_, which
is passed through the inverse source filter 1/H(z). The
output of this is denoted as w = {w, }2_,.

To understand the basic ideas of this scheme, let
us assume the speech source is Gauss-Markov. It can
be argued that the optimal N-dimensional codebook
boundary for the trellis code will be some N-dimensional
“ellipsoid”. Unfortunately, there is no known algorithm
for indexing trellis code sequences lying inside an ellip-
soid. However, it is clear that in the innovations do-
main the optimal boundary for w is an N-dimensional
sphere. The vector w can therefore be indexed by the
SVQ encoding algorithm [8]. However, w does not lie
on an N-dimensional grid — which is required for the
SVQ encoding algorithm. The purpose of the inverse
ISI coder is to map w into a grid point. More specifi-
cally, for each n, w, is mapped (quantized) to the near-
est point in A4. The inverse ISI coder output, z,, is
given by

Zn = Wp +my € Ay,

where m,, is the mapping error. Note that the energy
of z,, is the sum of the energy of the (quantized) inno-
vations sequence wy, and the energy of my, i.e., E[22] =
E[w2]+E[m?]. This increase in energy, E[m2], is called
the precoding loss and in this case it is equal to a2/3.
As the rate increases, ¢ — 0 and thus the precoding
loss becomes negligible.

The vector z = {z,}_, € AY can now be indexed
by the SVQ encoding algorithm. The SVQ codebook,
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C, consists of all vectors z € Ay which satisfies

N
3 iz) < L (1)

n=1

where {(z) is a non-negative integer length Vz € A4
and L is a length threshold. L is chosen to obtain
the desired rate and I(z) is assigned according to the
distribution of the innovation sequence. For Gaussian
innovations, I(z) = 2% and for Laplacian innovations,
l(z) = |2|. An algorithm for indexing the vectors in
this codebook is provided in [8].
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Figure 2: The ISI Coder.

At the receiver, x can be recovered using the ISI
coder! shown in Figure 2. Assuming the channel is
error-free, upon receiving a binary codeword, the SVQ
decoder produces z € Ay . The ISI coder operates on z
in the following manner. The input 2, consists only of
points in A4. The trellis encoder tracks the sequence
{2n}. If the current trellis state allows points only in
A4, then the trellis encoder output is J, = 0; otherwise,
Js = 1. The box labeled ‘MOD’ takes f,; as the input
and implements the operation Mod (2Z2) if J, = 0 and
Mod (2Z + 1) if J, = 1 to produce the output m,.
Thus, ¢, = fn — My isin Ay if J, = 0 and in Ap if
Jn = 1. A simple analysis will show that £, = gn + 2z
is’a point on A4 if J, = 0 and in Ag if J, = 1 as
is required to be consistent with the trellis code. The
quantized sample, £, now drives the trellis encoder to
its next state. Note that £, can be obtained directly
from the ISI coder. Therefore, it is unnecessary to filter
{wn} by H(z) (as in Figure 1).

2.2. Codebook Search

In the above formulation, we assume that the vector
z lies in the SVQ codebook, C. For high-rate quanti-
zation and sufficiently large N, this will almost always
be satisfied (assuming that a is chosen appropriately).

1In our implementation, we used an improved ISI coder de-
scribed in [5) in which the precodingloss is reduced by a factor of
four. However, for sake of simplicity, we present here a simpler
version of the ISI coder.



This result is due directly to the asymptotical equipar-
tition property of information theory. For practical im-
plementation, however, one must ensure that z € C. To
do this, we use the following two techniques.

Biased Distortion Measure: Instead of quantizing x
to the nearest vector in the unbounded TCQ codebook,
we quantize it in a manner which increases the likeli-
hood that z € C. Specifically, we use the following
distortion measure

D= (Zn - ﬁn)z + €VﬂE‘(:i’ﬂ - Z"),

where € is a small constant and V, E is the n-th compo-
nent of the gradient of the energy of y at x. When V,E
is positive, z,, is more likely to be quantized toward
smaller values. On the other hand, if V,, E is negative,
it is more likely to be quantized toward larger values.
This biased distortion measure is used in the TCQ and
its aim is to choose X close to x such that z € C. In
our implementation of the above, V, E is computed by
replacing (21,232, ...,Zn—1) by its quantized values on
the path leading up to the current trellis state. Ini-
tially, we choose ¢ = 0.05. If this does not result in z
satisfying (1), we increase € to 0.1 and then to 0.2 and
0.5. If this still does not work, we gradually move x
toward the origin and repeat the attempts.

Reduced-State Search: Here, we use a reduced-state
search similar to that described in [9]. The search algo-
rithm keeps track of the cumulative distortion incurred
leading to a certain state, s, with cumulative length,
l. This value is updated for each time instance n using
dynamic programming. In this scheme, the number of
trellis states increases by a factor of L and the output
z is guaranteed to be in C. We note that this scheme
does not guarantee that the output vector, x, is the
closest vector in the ICQ codebook. However, its com-
plexity is significantly less than the optimal full-state
search algorithm for which the complexity grows expo-
nentially with the source filter memory order. Details
of this algorithm can be found in [11]. Since the search
complexity depends on L, this scheme will only be used
for low-rate quantization.

3. SIMULATION RESULTS

We use a speech database consisting of three sentences:
(1) “The pipe began to rust while new (Female), (2)
“Oak is strong and also gives shade” (Male) and (3)
“Cats and dogs each hate the other” (Male). The
speech signal is sampled at 8 kHz and LPC analysis
is performed on 32 msec frames. Each frame is divided
into four 8 msec subframes. The ICQ operates on each
subframe (vector dimension N = 64).
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The LPC parameters are represented as line spec-
trum pairs (LSP) and are quantized using a 3-4-3 split
vector quantizer of rate 30 bits/frame. The other side
information (pitch delay, pitch gain and residual gain)
are also quantized. Details are given in Table 1 below.
The quantizers for the side information are designed us-
ing training data from a different database than above.

| Side Information | Rate (per frame) | Rate (bps) |

LSP (Spht VQ) 30 bits/frame 937.5 bps
Pitch Delay (Integer) 8 bits/frame 250 bps
Pitch Gain (NUQ) 5 bits/frame 156 bps
Residual Gain (NUQ) | 5 bits/subframe 625 bps

| Total Rate of Side Information | 1968.5 bps |

Table 1: Coding of Side Information; Gains are Quan-
tized Using Non-Uniform Scalar Quantizers (NUQ).

The ICQ is designed for target rates of 8, 13, 16
and 24 kbps. The true rate may be different due to
the bit allocation scheme. In Table 2 below, we list all
the parameters of the ICQ for each bit rate. We used
the reduced-state search method in all cases except at
24 kbps where we used the biased distortion measure.
At low rates, the reduced-state search leads to bet-
ter performance results. At high rates, both schemes
have similar performance though the biased search has
a smaller complexity. Here, we assume that the inno-
vations sequence are i.i.d. Laplacian (I(z) = |z|). The
length thresholds given below are for the improved ver-
sion of the ISI coder. All results given are for Unger-
boeck’s four-state code.

Target | True

Rate | Rate | Search | ICQ

(bps) | (bps) | Method | Rate | L | a/o

8000 7593 | Reduce 45 12 | 0.52
13000 { 12343 | Reduce | 83 30 | 0.32
16000 | 15593 [ Reduce | 109 | 49 | 0.27
24000 | 23593 Bias 173 | 129 | 0.15

Table 2: ICQ Parameters for Different Bit Rates; 1CQ
Rates are in Bits/Subframe; L = Length Threshold;
a/o = Scaling Factor.

The simulation results of ICQ in terms of signal-
to-noise ratio (SNR) and segmental SNR (SEGSNR)
are given in Table 3. Our listening tests reveal that
the reconstructed speech signals at 16 and 24 kbps are
almost indistinguishable from the original (64 kbps).
At 13 kbps, the signal can be distinguished from the
original though the sound quality is still reasonable.
At 8 kbps, the signal is still comprehensible though it



sounds “scratchy”. We have attempted to add percep-
tual weighting to the ICQ (by transforming the signal
into the perceptually-weighted domain before quantiza-
tion). However, this led to only minimal improvement
in speech quality at 8 kbps.

Rate ICQ-SNR/SEGSNR

(bps) Sent. 1 | Sent.2 | Sent. 3
8000 | 12.25/11.52 | 10.36/9.47 | 10.68/10.53
13000 | 18.94/18.12 | 17.76/16.10 | 17.51/17.65
16000 | 22.61/21.47 | 21.47/19.38 | 21.06/21.01
24000 | 28.85/27.78 | 28.49/25.79 | 27.37/27.23

Table 3: SNR/SEGSNR (in dB) of ISI Coded Quan-
tizer at Various Bit Rates.

In Table 4 below, we compare ICQ results for Sen-
tence 1 with three baseline schemes: (i) GSM RPE/LTP
at 13 kbps, (ii) predictive TCQ (PTCQ) [10] at 16 kbps
and (iii) ADPCM at 24 kbps. We note that compar-
isons with GSM in terms of SNR and SEGSNR may not
be appropriate due to the pre- and post-processor used
in GSM (our implementation of ICQ does not include
post-processing). Our listening tests show that speech
quality of ICQ at 13 kbps is comparable to GSM 13
kbps even though the SNR/SEGSNR results of ICQ are
higher. The results of PTCQ are obtained directly from
[10] (four-state adaptive prediction, adaptive residual
encoding), which used the same speech database. Note
that at 16 kbps, ICQ outperforms PTCQ by about 2
to 4 dB for Sentence 1. Comparisons for the other
two sentences reveal a similar gap. The ADPCM re-
sults were obtained from the CCITT G.723 standard.
Speech quality of ICQ is superior to ADPCM at 24
kbps.

Rate i

(bps) ICQ Baseline

13000 | 18.94/18.12 13.54/10.23 (GSM)
16000 | 22.61/21.47 | 18.49/19.60 (PTCQ)
24000 | 28.85/27.78 | 21.38/18.62 (ADPCM)

Table 4: SNR/SEGSNR (in dB) Comparisons of ICQ
Versus Baseline Schemes at Various Bit Rates for Sen-
tence 1.

Finally, we mention that ICQ has the advantage
of not requiring training data to obtain the codebook.
The codebook is defined by the boundary region in-
duced by the source filter. Thus, the speech coder can
adapt its codebook to the changing characteristics of
the source filter. This is in contrast to CELP, which
has a fixed innovation-domain codebook.
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4. CONCLUSION

We have described a speech coder based on the ICQ.
We found that the simple codebook search algorithm
described in [1], [2] works well for high-rate speech
coders (above 24 kbps) but performs poorly at lower
rates. For moderate rate coders (around 24 kbps) we
found that using the same search algorithm with a bi-
ased distortion metric (in place of mse) results in signif-
icant performance improvements. For even lower rate
coders (16 kbps and below) a reduced-state codebook
search algorithm was presented. This is more complex
to implement than the biased metric but performs bet-
ter at low rates. The speech quality of the ICQ based
speech coders was very good for rates over 13 kbps but
degraded rapidly at lower rates.
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