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ABSTRACT

When using hidden Markov models for speech recognition, it is usually
assumed that the probability that a particular acoustic vector is emitted at a
given time only depends on the current state and the current acoustic vector
observed. In this paper, we introduce another idea, i.e. we assume that, in a
given state, the acoustic vectors are generated by an linear stochastic differential
equation. This extends our previous model, in which we assumed that the
acoustic vectors are generated by a continuous Markov process. This work is
motivated by the fact that the time evolution of the acoustic vector is inherently
dynamic and continuous, so that the modelling could be performed in the
continuous-time domain instead of the discrete-time domain. By the way, the
links between the discrete-time model obtained after sampling, and the original
continuous-time signal are not so trivial. In particular, the relationship between
the coefficients of a continuous-time linear process and the coefficients of the
discrete-time linear process obtained after sampling is nonlinear. We assign a
probability density to the continuous-time trajectory of the acoustic vector
inside the state, reflecting the probability that this particular path has been
generated by the stochastic differential equation associated with this state. This
allows us to compute the likelihood of the uttered word. Reestimation formulae
for the parameters of the process, based on the maximization of the likelihood,
can be derived for the Viterbi algorithm [34]. As usual, the segmentation can be
obtained by sampling the continuous process, and by applying dynamic
programming to find the best path over all the possible sequences of states.

1. INTRODUCTION

Hidden Markov models (HMM) are widely used for speech recognition
([201, [26], [32], [16]). However, strong assumptions have to be made to
render the model computationally tractable (see, for instance, [2]). One of
these assumptions is the observation independence of the acoustic vectors.
Indeed, it is usually assumed that the probability that a particular acoustic
vector is emitted at a given time only depends on the current state and the
current acoustic vector observed. This does not take account of the time
dynamic behaviour of the acoustic vector inside a state. This problem of
time dynamic modelization has become an important research topic in
speech recognition. For instance, Furui ([11], [12]) and Gurgen,
Sagayama & Furui [15] introduce features including the time-derivative of
the acoustic vectors. Deng ([S], [6]) modelizes the temporal evolution of
the acoustic feature inside a state by a given function of time, i.e. a
polynomial trend function of time ¢ spend in the state. Wellekens [41]
assumes explicit dependence between the current vector and the last
observed vector. He shows that, in the case of a correlated Gaussian
probability distribution function, the emission probabilities depend on the
prediction error of a first order linear predictor. On the other hand, Poritz
{31], Juang [21], Juang & Rabiner [22] (see also [23], [39], (43]) use
Gaussian autoregressive densities per state, assuming that the acoustic
vectors are generated by linear autoregressive processes, corrupted by
Gaussian additive noise. Once more, the emission probabilities depend on
the prediction error of a linear predictor (given by the autoregressive
model). An extension of the Gaussian autoregressive densities model, in
which we allow the autoregressive coefficients to be stochastic variables,
is presented in [35].

More recently, some authors have considered the possibility of using non-
linear prediction models (mostly multi-layer neural networks) for speech
recognition with hidden Markov models ([40], [24], [25], [37], [38],
{301, [17], {18], [4)). In this case, the acoustic vectors are assumed to be
generated at each frame by a discrete nonlinear process, different for every
state, corrupted by an additive uncorrelated Gaussian noise. It generalizes
the work mentioned above, where linear prediction models were
considered. Another interesting work, relying on a dynamical system
approach with parameter training based on the EM algorithm, can be
found in ({7], [8]).

Our work can be considered as a continuous-time version of the linear
autoregressive modelling just mentioned. It tries to address the following
question: Isn't it possible to build a continuous-time formulation of hidden
Markov modelling for speech recognition, following the fact that speech is
continuous and dynamic by nature. In other words, what is the
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continuous-time counterpart of the linear discrete-time modelling. In most
domains dealing with continuous-time physical systems, such as control
systems theory, the analysis and the modelling can be performed in the
continuous-time domain, so that sampling only occurs afterwards for the
purpose of digital computation. We have to keep in mind that the
relationship between a continuous-time linear system and the discrete-time
linear system obtained after sampling of the continuous-time signal is non
so trivial.

More precisely, in this paper, we assume that, in a given state, the
acoustic vectors are generated by an ordinary first-order linear stochastic
differential equation. This extends previous work, in which we assumed
that the acoustic vectors are generated by a continuous Markov process
[34]. In other words, we assign a probability density to the continuous
path of the acoustic vector inside the state, reflecting the probability that
this particular path has been generated by the continuous stochastic
process associated with the state. This computation relies on the concept
of path integral — also known as Wiener integral [42] — widely used in
theoretical physics (see, for instance, [9], [10], {14], [36]).

As usual, the sequence of states is assumed to follow a first order discrete
Markov process. However, in our model, the state transitions do not
occur at regular time intervals, so that it should be more appropriate to
speak about semi-Markov process [3]. The probability of a succession of
states and the observed time evolution of the acoustic vector can be
computed as the product of transition probabilities between the states and
path probabilities inside the states. This leads to the computation of the
likelihood of the uttered word.

This approach leads to the introduction of a time-derivative which is to be
added to the acoustic vector, and is therefore related to Furui ({11}, [12])
and Gurgen, Sagayama & Furui's work [15], which also consider the
time-derivative of the cepstral vector as a feature. Once the segmentation is
fixed, reestimation formulae for the parameters of the process (based on
the maximization of the likelihood) can be derived for the Viterbi
algorithm in the same way as in [34]. The segmentation can be obtained
by sampling the continuous process, and by applying dynamic
programming to find the best path over all the possible sequences of
states. This computation follows the same line as in [34].

2. MOTIVATIONS: WHY CONTINUOUS-TIME MODELLING ?

Continuous-time modelling could appear mere as an exercice de style, so
that we will give some motivations to follow the developments.

(i) First of all, while in speech processing sampling is often assumed a
piori, the speech production system is continuous by nature. It implies
that the time evolution of the acoustic vector is inherently dynamic and
continuous, so that the analysis and the modelling could be performed in
the continuous-time domain.

Now, let us examine what happens when the dynamic of the speech
process is modelled after sampling by a discrete-time linear model (see,
for instance, [1]). In this case, the speech samples are supposed to follow
an autoregressive process corrupted by additive Gaussian white noise in
each state of the Markov model. In state-space configuration, this means
that the state vector X at time step k is following

Xi+l = Bxg (N

However, let us assume that the time evolution of the state vector is in fact
following a continuous-time linear differential equation:

d—’;—(ti = x = Ax )
The solution of this differential equation is
x(2) = exp[A (t-0)] x(0) 3)
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where Xx(fg) is the initial value at time ¢, and exp{A ¢] is defined as
Sat

n=0
Now, by sampling this continuous-time process with a sampling period
Az, we obtain the discrete-time process:

exp{A 1]

X+l = explA af] x (5)

where we used the following notation: x;=x(k Af). The matrix B defining
the autoregressive process (1), obtained after sampling, is therefore given
by

B = explA af] (6)

This shows that there is no trivial correspondance between the coefficients

- of the continuous-time differential equation and the coefficients of the
difference equation obtained after sampling. In addition, the
correspondance is nonlinear. While certain dimensions can be
uncorrelated in the original process, the sampling action can introduce
correlations. Despite the fact that both the discrete and the continuous
model are linear, and therefore do essentially the same think, the model
could (or not; only experiments could decide) be simpler and more easily
identified in the continuous-time domain.

Moreover, if we change the sampling period from af to aAr', the resulting
discrete-time process will be:

Xi+1 = explA ar]xg O]

and, once more, there is no trivial correspondance between the
coefficients of the two discrete-time processes (5) and (7), having a
different sampling frequency. This means that the modelling by a discrete-
time process at a given sampling frequency is only valid at that frequency.
This fact makes the continuous-time formulation more attractive.

In addition, the entire left half plane of the p-plane (Laplace transform) is
mapped into the unit circle of the z-plane (z transform). The
correspondence between the zeroes of the continuous-time polynomial p;
and the zeroes of the discrete-time process g; obtained after sampling is
given by g; = exp([p; ar]. As At — 0, the zeroes in the p-plane are mapped
into a close cluster near z=1 in the z-plane. This leads to numerical ill-
conditioning: for instance, we have dq,/dp,—At explp; at] - 0 with ar -
0, so that the ¢; become increasingly insensitive to p;. We therefore need
higher precision for the coefficients of the discrete-time polynomial when
At — 0 (this has been observed in control theory; see [27], {33]).

Now, let us briefly resume the other reasons that lead us to the
introduction of the continuous-time model that will be described in this
paper, while these reasons will only become clear later. Some of these
reasons are not specific to continuous-time models.

(i) The model takes account of the dynamic of the acoustic vectors since
the mean value of the acoustic vector is supposed to follow a temporal
trajectory. Indeed, we will show later that the acoustic vector is following
the solution of a p-order vectorial linear differential equation in average.
The dynamics of the vector is therefore represented by a vectorial linear
differential equation subject to random fluctuations, for each state.

(iii) It models the uncertainty related to the observed process. For times
near the initial condition, the acoustic vector is expected to be near the
observed value, while, as time goes on, the position is becoming more
and more fuzzy. For instance, this gives us the possibility to consider
processes for which the observations are generated at a nonconstant time
period (while, of course, this kind of process is extremely rare).

(iv) The model is just an extension of the one-Gaussian-per-state
continuous hidden Markov models, by ailowing the mean value and the
variance-covariance matrix of the Gaussian densities to evolve over time.

3. GENERAL OVERVIEW OF THE MODEL

The model is formulated in the framework of word recognition with
Viterbi algorithm. In the future, both for parameter estimation and for
segmentation, we will be interested in the evaluation of the total
probability (the likelihood) of the observations P(X, S), where S is a
sequence of states (sg, 51y ..., SQ) defining a word together with its
segmentation, and X is the time evolution of the acoustic vector x(t),
observed over the whole word. The estimation of the parameters will be
based on the maximization of this likelihood, while the state segmentation

will be chosen so as to maximize the a posteriori probability P(S | X). We
have

P(X,S) = PX|S) P(S) (8

Now, the sequence of states is assumed to be modelled by a discrete
Markov process, and the time evolutions of the observations arising from
any state are assumed to be independent, so that we can write

P(S) = [kH1 sk b sk-1)] 7o )
=1Q
PX|S) = [T &&x(0] (10)

where 7(sy | sx-1) is the transition probability of the discrete Markov
model of states, and gﬁ[x(t)] is the probability density of the observed
continuous acoustic vector trajectory x(¢) on state s.

The problem is, of course, to compute the probability density of a path
GAUx(1)] on a state 5. In the following, we will suppose that the acoustic
vectors x(#) are generated by a stochastic differential equation in each
state, and, from this assumption, we will be able to compute the
probability density of the observed path x(z).

4. MARKOV PROCESS GENERATED BY AN ORDINARY
STOCHASTIC DIFFERENTIAL EQUATION

Most of the material in this paragraph is taken from Gardiner [13];
therefore, see this monograph for more details. Let us assume that, in
each state s € {0, 1, ..., q}, the acoustic vector x(?) = [x;(D), x2(2), ...,
x4(D]t at ime ¢ is generated by a stochastic differential equation:

D - %= Asx-x) + Bt an

where Ag and B; are d-dimensional square matrices of real values, and the
vector §(f) is a rapidly fluctuating random term, simulating a noise
source. An idealised mathematical formulation of the concept of a "rapidly
fluctuating random term" is that for ¢ # ', €(¢) and €(¢") are statistically
independent. We also require that the mean value is zero, i.e. <§()> = 0.
We thus have for the covariances <[§](r) [g] {)> = 8 S(t—t') where [€];
is coordinate { of vector § (this correponds to whxte noxse

Now, it is known from the theory of stochastic processes that if the
variable deﬁnefl as

u) =], e ar (12)

is a continuous function of ¢, the process described by (11) is the so-called
multivariate Ornstein-Uhlenbeck process. As seen from (11) and (12), it
corresponds to a linear process undergoing uncorrelated fluctuations so
that the overall observed trajectory is continuous. The "noise” § is
responsible for the stochastic nature of the process, so that the position of
x is not deterministic but is characterised by a probability density
function, reflecting the probability of observing this position. Ornstein-
Uhlenbeck process occurs, for instance, for the velocity of a particle in
Brownian motion.

Expressions (11) and (12) define a continuous Markov process in the
sense that the conditional probability density of finding a particular value
of the acoustic vector x at time ¢ is determined entirely by the knowledge
of the most recent condition, that is, by the most recent observation. This
means that if p(x, | xg, to, X|, t}) with fo<t)<? represents the conditional
probability of observing x at time ¢, given that we observed X at £p and
x| at ty, p(x, t| Xq, to, X;, 1) is simply equal to p(x, ¢ | x3, #;).

For a deterministic initial condition pg(x, tp) = 8(x-Xg), the corresponding
conditional probability density ps(x, ¢! X, #o) is Gaussian with mean

<x(t)> = my(r) = explA; (1 - 19)] (X(f) — Xs) + Xs (13a)
and variance

<[x(t) - <x(1)>] [x(t) — <x(O)>]'> = A((D)

t
= I % exp[A;s (1 - 1] Bs (Bs)' exp[(Ag)! (1 - 1)] df (13b)
where t denotes the transpose of the matrix, and exp[A; 7] is defined by
4.

Therefore, we have:
1

vand Ia sl '

ps(X, t1xg, tg) =

234



exp{ (14)

At any fixed time, it corresponds to a Gaussian distribution, but it has a
time-varying mean and variance. The mean is following a exponential
curve with parameters X;, A, describing the dynamical behaviour of the
acoustic vector inside state s. The probability density (14) becomes a
Dirac distribution centered on xg for r—1, reflecting the fact that we
indeed observed the point at position x = Xo. The variance defined by
(13b) is the integral of a positive definite matrix; therefore, the variance
matrix is continuously increasing, that is, the uncertainty about the
position is growing. This provides the justifications for the properties (i),
(iii), and (iv) mentioned in section 2.

_ [x(0 - m(D]* (Ag(0)! [x(2) - m(n)] }
2

A remarquable think is that the Gaussian nature of Omstein-Uhlenbeck
process follows from the continuity of the observations (12), and must
not be assumed a priori. Roughly speaking, this results from the central
limit theorem: In a small time interval At, the process undergoes a large
number of infinitesimal uncorrelated fluctuations that results in a Gaussian
behaviour.

5. COMPUTATION OF THE PATH PROBABILITY DENSITY
FOR EACH STATE

Let us define for each state s € {0, 1, ..., ¢} the conditional probability
density of observing the acoustic vector x(r) = [xo(t), x1(?), ..., x4(8)]! at
time #, given that the acoustic vector was Xop at time #o, as ps(x, ¢ | X, fp).
Each conditional probability density ps(x, ¢ | Xo, fo) is characterized by
some parameters that will be labelled by s, and is supposed to be
independent of the other states. We assume that the process is a
continuous time — continuous state Markov process, such as the one
described by (14) ([13], [29]). As pointed out in preceding paragraph,
this means that the conditional probability density of finding a particular
value of acoustic vector x at time  is determined entirely by the
knowledge of the most recent observation.

Let us consider that state s is segmented from ¢ to #r. By dividing the
interval [r, #/] into N equal parts of length At = (i —19)/N, the path
probability density ZA[x(1)] can be computed as follows (see Appendix):

FAx0]

limy_, 100 [Ps(X1, 111 X0, 10) ... Ps(XN, I | XNty EN-1)]
1

limy_,, ———
- V@n and 1ZhV

N L

Z] [Xio1 - As (xio1 - X0 (Z5)!
exp{- = >
[xi) - As(xi_—x5)] At }

(15
= XKiv] = X;) )

where we have posed x; = x(#)), 5 = B, (By)t, and X; -

This result can be extended to higher order stochastic differential
equations. Indeed, since any system of n linear m-order differential
equations can be put in the form of a system of (n x m) first order linear
differential equations, the vector x can also be interpreted as a vector
containing the acoustic vector, the first derivative, etc (state-space
configuration). If, for instance, we decide to modelize the time evolution
of the acoustic vector by a p-order linear differential equation, we should
construct an augmented vector x including the acoustic vector and its (p—
1) derivatives, as well as the corresponding matrix A. Of course, the
weakness of the method is that we need the derivatives of the acoustic
vector, but since the parameters are supposed to be fixed during the
estimation stage, these derivatives can be evaluated in a reliable way by
using a Kalman-Bucy filter for each state (see, for instance, [19]).

We observe that assuming that the acoustic vectors are generated by a
linear first-order stochastic differential equation leads to the addition of a
"time-derivative" to these vectors in the computation of the distance. This
kind of feature transformation has been studied by Furui [12] and
Gurgen, Sagayama & Furui [15] for LPC analysis. They call it
"combination of instantaneous and transitional LPC frequencies in the
parameter domain". They compared this feature combination with the
more usual "combination in the distance domain", which means that an
augmented vector (X, X) is constructed. Experimental results [15] show
that the first method has a slightly better recognition performance than the
second. Combination in the parameter domain is also advantageous in
terms of computation; that is combination can be obtained during speech

signal analysis and thus it does not result in extra computation at the
recognition level [15].

6. SEGMENTATION AND PARAMETERS ESTIMATION

Segmentation and parameters estimation (by Viterbi algorithm) is based on
the maximisation of the likelihood;

Q Q
F= kI:[l m(sk | se-1] . [TT Folx()]]
A detailed derivation can be found in [34].

7. CONCLUSION

In this work, we have considered that, on each state, the acoustic vectors
are generated by a linear first-order stochastic differential equation. This is
to be opposed to the current assumption, i.e. that acoustic vectors are
emitted according to a probability distribution that only depends on the
current acoustic vector observed. This allows us to consider the time
trajectory of the acoustic vector as a continuous dynamic path, and to
derive the probability distribution of observing this trajectory, given the
state. It measures the "distance” of the observed trajectory to an ideal
trajectory (not corrupted by noise), which is supposed to be modelled by a
linear differential equation. Once the segmentation is fixed, reestimation
formulae for the parameters of the continuous Markov process can be
derived for the Viterbi algorithm [34]. The segmentation can be obtained
by sampling the continuous process, and by applying dynamic
programming to find the best path over all the possible segmentations of
states [34]. This provides some enlightenments to related work of Poritz
[31], Juang [21], Juang & Rabiner {22], Furui ([11], [12]) and Gurgen,
Sagayama & Furui [15]. In another paper [34], where we considered a
less general continuous Markov process, we have shown that duration
models are easily introduced, but dynamic programming must then be
performed in three dimensions to find the best path through all the
possible successions of states and all the possible durations [3]. We also
sketched a possible generalization to path mixtures, for which different
trajectories are available in each state.
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APPENDIX: COMPUTATION OF THE PATH PROBABILITY DENSITY

We have to compute the probability density Z3[x(s)] of an observed time
trajectory of the acoustic vector x(f) on state s. This can be done by using
the concept of path integral, widely used in theoretical physics (see, for
instance, [9], [10], [14], [36]). A similar calculus has already been carried
out for a particular continuous-time Markov process [34]; see this paper
for more details.

Now, the probability that an acoustic vector starting at (xo, to) is inside
domain Q) at time ¢, is inside domain Qj at time f,, ..., and is inside
domain Qy at ty = tr (tj < tj41) is given by:

Ja

dxy I dxy ps(xn, ty| Xno1, IN-1)
1 Qy

. Ps(X2, £21X1, 11) ps(X1, t1 1 Xo, f0) (AD)
with x; = x(t;). For No+oe, and At = (tj —ti-1) = (tr-1o)/N — 0, we can
write (A1) symbolically as

[a PO 2x0) (A2)

which means that we are integrating over all the continuous paths x(s)
lying in domain Q(r), with initial condition x(tp) = xo. It has been shown
([42], [14]) that we obtain a measure on the space of continuous paths
x(f) with x equal to xp at ¢ = fp. We have now to compute

AIx(®] = limy_, o [ps(x1, 111 X0, 10) ps(x2, 121 %1, 11)
o Ps(xa, tn 1 XNC1, INCr)]

for the conditional probability density defined by (14).

Since Ar-0, we can expand the mean and the variance to the first order at
the initial value (for smail values Az in comparison with the characteristic
response times of the process defined by (11), but large compared to the
time interval between the small random fluctuations). For instance, in the
case of ps(x1, 1) | Xg, 20), we obtain at the first order:

x(t1) - my(e1)

x(t1) - [1+ Asar] (x(5p) —x5) - X5

= [Xp - As (xg-X5)] At (A3)
where we have posed X; = Q‘.&_A;_XQ . For the variance, we obtain:
Ag(h) = By (By)tat (Ad)
Let us now define
I; = B; (Bt (AS5)
As(t) = Zgar (A6)

Now, we can evaluate (for more details, see [34])
Ax(D] = limy_,o [ps(x1, 111 X0, 10} ps(X2, 121 %3, 11)
- s tnl Xy, tvc1)]

= limy, PR W
- Vi@ and 1ZhN

N .
S [Xic - As (X - x9]F (Eg)7!

i=1

exp{- 3

[;‘i-l - Ay (xj-1 - x5)] At } (AT

which can also be written symbolically as
RO] = my_y0e e
Vi@ar and 1hN¥
’f . .
i U - Ay - x)1F E9)7 [R - Ay (x-x9) dt

exp{- 3 } (A8)
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