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ABSTRACT

We show that many of the errors in a context-dependent
phone recognition system are due to poor segmentation. We
then suggest a method to incorporate explicit segmentation
information directly into the HMM paradigm. The utility
of explicit segmentation information is illustrated with ex-
periments involving five types of segmentation information
and three methods of smoothing.

1. INTRODUCTION

One of the most attractive features of HMMs for speech
recognition is that segmentation and classification are
solved simultaneously. However, the maximum likelihood
training criterion may not lead to a model that best utilizes
the acoustic information for segmentation.

In this study, we investigate the possibility of improving
HMM performance by providing explicit segmentation in-
formation. We define a change function as a function that
directly measures the spectral variation of the acoustic sig-
nal. The change function is integrated into the HMM as
the cost of making a transition from one phone to another
phone during Viterbi alignment.

We consider a variety of change functions. The hand-
labeled phone boundaries that are provided with the TIMIT
corpus provide the ideal change function. We use the
TIMIT phone transcriptions to provide an upper bound
on the benefits of explicit segmentation. We also consider
two change functions that can be automatically extracted
from the acoustic signal: one based on delta cepstral coef-
ficients, and the other based on the spectral variation func-
tion (SVF) used in {1]. Since smoothing the output pa-
rameters has an effect on segmentation, we consider three
different methods of smoothing in conjunction with explicit
segmentation information.

2. RELATED WORK

Other approaches [1, 2] have used spectral variation to ex-
plicitly segment the signal and before using HMM to de-
termine the most likely sequence of phones or words. For
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the context-independent isolated word recognition task ad-
dressed in [1], a fixed number of frames are selected from
each segment to represent the acoustic information con-
tained in the signal. The context-independent phone recog-
nition system described in [2] represents a phone by three
spectral vectors, taken at the beginning, middle, and end
of a segment. Our approach differs in the following ways:

1. Our HMM operates at the frame level, and all frames
are processed by the HMM. Our goal is to improve
segmentation rather than overcome the modeling er-
rors due to the HMM assumption that multiple ob-
servations emitted from the same state are assumed
to be independent. Hence, our system does not use a
variable frame rate.

2. We tightly integrate the segmentation information in
the HMM.

3. We can include segmentation information incremen-
tally by weighting the change function. With a weight
of zero, the model reduces to a standard HMM. This
allows us to evaluate the utility of segmentation in-
formation by comparing the HMM results with and
without segmentation information.

4. We use segmentation information in a context-
dependent recognition system.

3. SYSTEM DESCRIPTION

Our HMM models 47 phones in context, which are mapped
to a set of 39 phone classes for evaluation [3]. For these
experiments, we haved used a discrete HMM with the fol-
lowing four codebooks: 1) 12 cepstral coefficients warped
with a bilinear transform, 2) 12 delta cepstral coefficients, 3)
power, and 4) delta power [4, 5]. A frame is 20 ms long with
10 ms overlap. We use 3360 sentences from 420 speakers
for training, 1184 sentences from 148 speakers for smooth-
ing output parameters, and 160 sentences from 20 speakers
for testing. There is no overlap between the three speaker
sets. All sentences are taken from the TIMIT corpus. The
context-dependent output distributions are smoothed by
mixing the following: a uniform distribution, a context-
independent distribution, and the distributions associated
with the other 46 contexts. For example, the beginning
distribution of an ‘s’ that follows ‘k’ is mixed with the be-
ginning distribution of an ‘s’ that follows ‘ae’, the beginning
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Figure 1: Topology of the phone recognizer. The boldface circles represent the middle of a phone, which is assumed to:be
context-independent. Dashed lines are null transitions, and boldface dashed lines represent phone boundaries.

distribution of an ‘s’ that follows ‘b’, etc. We have found
this method of mixing to be superior to mixing with only
a context-independent distribution and a uniform distribu-
tion. Six iterations of the forward-backward algorithm are
used to train the model and five iteration of smoothing are
performed using held-out interpolation [6].

4. UTILIZING THE CHANGE FUNCTION AS
A TRANSITION PENALTY

The topology of our phone recognizer is shown in figure 1.
Fach phone is comprised of three distributions. The be-
ginning distribution is left context-dependent, the ending
distribution is right context-dependent, and the middle dis-
tribution is context-independent. The dashed lines in figure
1 represent null transitions. The observations are emitted
during the non-null transitions between states, represented
by solid lines. The null transitions in figure 1 that are shown
in boldface dashed lines serve as phone boundaries. A tran-
sition between phones incurs a cost that depends on how
much the signal is changing at the time of the transition.
Unlike variable frame rate processing, a spurious peak in
the change function is not necessarily problematic for the
HMM recognizer since a phone transition is not mandatory
at points of large spectral change, and the HMM topology
need not be modified to handle segmentation errors.

Let ¢(t) denote the change function. Since the change
function is used during Viterbi alignment, we will describe
its values in the log domain. A large positive value for
¢(t) encourages the HMM to make a phone transition at
time t, hopefully to correct a deletion. A large negative
value discourages a transition to a new phone, hopefuily
to eliminate an insertion. It is important to note that only
designated transitions between phones (the boldface dashed
lines in figure 1) utilize the change function; other state
transitions are not affected.

5. CHANGE FUNCTIONS

5.1. No Explicit Segmentation

If the change function c(t) is set to zero for all ¢, then there
is no transition penalty or incentive, and the model reduces
to a standard HMM. This provides a baseline performance.

5.2. Hand-Labeled Segmentation

We include segmentation information during recognition
because we hypothesize that many classification errors are
due to poor segmentation. We have tested this hypothesis
by providing hand-labeled segmentation during both train-
ing and recognition. Ignoring human errors in the TIMIT
transcriptions, the hand-labeled segmentations provide the
ideal change function:

1)

{ +oo if a phone ends at ¢
c(t) = .
—oo otherwise

The vertical transitions of c(t) occur at the given phone
boundaries, which are shown in figure 2a.

In order to analyze classification errors that are due to
segmentation, we also consider a change function that al-
lows TIMIT phone boundaries to be skipped, but disallows
spurious segment boundaries. This change function, which
we will refer to as “no-insert”, also uses the TIMIT tran-
scriptions:

;90 if a phone ends at ¢
«(t) _{ —00 otherwise )

A transition still must occur at a hand-labeled phone
boundary, but the transition is not mandatory. This essen-
tially eliminates insertions, but allows deletions. A small
number of insertions still result, however, because the scor-
ing algorithm finds the best alignment between the refer-
ence and test phones.

5.3. Automatic Segmentation

Using hand-labeled segmentation as the change function
provides an upper bound to the advantages of explicit seg-
mentation. For explicit segmentation to be useful, however,
it must be automatically extracted from the signal. We have
considered two alternatives for an automatically generated
change function: the sum magnitudes of normalized delta
cepstral coefficients and a variation of the spectral variation
function (SVF) used in [1]. These change functions are de-
rived directly from the observation vectors, so little signal
processing overhead is required.

The delta cepstral change function estimates spectral
change by summing the normalized time derivative of each
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Figure 2: a) The TIMIT phone boundaries for the sentence: Pizzerias are convenient for a quick lunch. b) The change
function formed by summing the delta cepstral coefficients. c) The change function found using the normalized scalar

products.

cepstral dimension. We define the delta cepstral change

function as follows:
dk(t) = Ck(t-l- 1) - Ck(t - 1), k=1,..,K
dk,ma: = m?*x ldk(t)l

C};(t) = dk(t)/dk,ma.r

K

)= )

k=1

émaz = max &(1)
¢

c(t) = é(t)/émaxz (3)

where Ci(t) is the k** cepstral coefficient for frame t and
K is the number of cepstral coefficients. An example the
the delta cepstral change function in shown in figure 2b.
The SVF change function estimates spectral change as
the angle between two normalized spectral vectors (cepstral
vectors in this study) that are separated in time by a fixed
number of frames. The SVF defined in [1] has been modified
slightly for this study. We calculate the SVF as follows:

(1) = Ct—1)-C(t+1)
HCe-nllce+n|

émaz = max EQI

c{t) = 0.5 x [1 — &2)/émaz]

(4)

where C’(t) is the difference between the t* cepstral vec-
tor, C(t), and the time average of cepstral vectors that lie
within a window centered at ¢, and “” indicates the scalar
dot product operation. An example the the SVF change
function in shown in figure 2c.
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6. RESULTS

In table 1, we compare the recognition performance of
a phone HMM with explicit segmentation to a standard
HMM. The %correct is defined as the percentage of refer-
ence phone labels that were correctly recognized, and %ac-
curate equals %correct minus the insertion rate.

In our experiments, we evaluate the utility of the various
forms of segmentation information for three different meth-
ods of smoothing. For SMOOTH-2, the context-dependent
output distributions are smoothed using only a uniform dis-
tribution. For SMOOTH-3, each context-dependent out-
put distribution is mixed with the corresponding context-
independent distribution as well as a uniform distribution.
Lastly, model SMOOTH-49 mixes each context-dependent
output distribution with the set of 47 related context-
dependent output distributions (see section 3), the appro-
priate context-independent output distribution, and a uni-
form output distribution.

For the simple smoothing model, SMOOTH-2, the delta
cepstral change function increases accuracy with only a
slight degradation in %correct compared to using no seg-
mentation information. For better smoothed models, how-
ever, the change function increases %correct slightly, but at
the cost of a slightly lower %accuracy.

For all three methods of smoothing, the ideal change
function reduced both insertions and deletions each by
about 5% of the total number of reference phones, which
added approximately 10% to the accuracy. When the
TIMIT labels were used only to eliminate insertions (i.e.,
change function “no-insert”), both the %correct and %ac-
curate increased by about 5%, which is consistent with the
fact that the ideal function reduces 5% of the deletions.

For the simplest method of smoothing, SMOOTH-2, the
delta-cepstral change function lowered the insertion rate by
1% compared to the standard HMM while having negligible
affect on %correct.

For the intermediate method of smoothing, SMOOTH-



Smoothing Type of Change Function
Model No Segmentation | Ideal | No-Insert | SVF | Delta-Cepstral
SMOOTH-2 67.1/58.3 70.9/69.3 - - 67.0/59.2
SMOOTH-3 67.6/61.0 72.7/71.2 | 66.6/65.5 | 68.8/61.3 69.2/60.6
SMOOTH-49 68.4/63.0 73.8/72.5 68.3/67.2 69.0/62.4 69.3/61.7

Table 1: Results using various forms of segmentation information. Shown are %correct/%accurate.

3, both automatic methods reduced the number of deletions
relative to the standard HMM, but at the cost of more inser-
tions. The resulting overall accuracy (100 — %substitutions
— %deletions — %insertions) improved slightly for SVF and
dropped slightly for the delta-cepstral change function.

For the last method of smoothing, SMOOTH-49, both
the SVF and the delta-cepstral change function led to more
new insertions than corrected deletions compared to the
standard HMM. The result is a slightly improved %correct
at the cost of degraded %accuracy.

Of the two automatic methods, the SVF had higher ac-
curacy while the delta-cepstral change function had a higher
%correct. This difference becomes more pronounced as the
smoothing is improved.

The more detailed method of smoothing yielded the best
results for all change functions considered in this study.
Compared to the more traditional method of mixing a
context-dependent distribution with only the uniform dis-
tribution and the corresponding context-dependent distri-
butions, the more general method consistently improved ac-
curacy by one to two percent for all change functions.

7. DISCUSSION

The incorporation of explicit segmentation led to very mod-
est increase in %correct for well smoothed models. How-
ever, the results fall considerably short of the upper bound
improvement, as measured using hand-labeled segmenta-
tion.

One possible explanation for the discrepancy is that the
cost of phone transitions is in general much smaller than
other terms that are combined during Viterbi alignment.
The log likelihood score is usually dominated by the out-
put probabilities, for example. To emphasize the change
function knowledge source, the segmentation information
can be weighted in the same way as other HMM knowledge
sources {e.g., “language match factor”). The results shown
in table 1 reflect a weight of five. After evaluating several
other weights as well as a number of additive offsets, we
conclude that recognition accuracy is not sensitive to small
variations in these constants.

A second explanation for the difference between ideal
segmentation and automatically generated segmentation is
that the change functions do not accurately predict a tran-
sition between some pairs of phones. Both of the change
functions considered in this paper are oversimplified mea-
sures of change. It seems likely that some cepstral coeffi-

cients are better indicators of change than others, so that it
would be reasonable to include weights wi, k =0, ..., K, in
equation 3. It may also be beneficial to increase the resolu-
tion of the change function by using a higher frame rate for
estimating the change function than is used in the HMM.

Currently, the supplemental segmentation information
is knowledge-driven. A data driven approach would require
that the HMM paradigm be modified so that nulls could be
produced from one stream while other streams are non-null.
Specifically, the stream corresponding to the change func-
tion would need to generate nulls for states that represent
the interior of a phone segment. We are exploring some of
these extensions.
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