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1. INTRODUCTION

The goal of this work is to highlight aspects of an experi-
ment other than the word error rate. When a speech recognition
experiment is performed, the word error rate provides no insight
into the factors responsible for the recognition errors. We begin
this paper by describing an experiment which contrasts the lan-
guage of conversational speech with that of text from the Wall
Street Journal. The remainder of the paper is devoted to the de-
scription of a more general approach to performance diagnosis
which identifies significant sources of error in a given experi-
ment. The technique is based on the use of binary classification
trees; we refer to the results of our analyses as diagnostic trees.
Beyond providing understanding, diagnostic trees allow for im-
provements in the performance of a recognizer through the use of
feedback provided by quantifying confidence in the recognition.

2. THE LANGUAGE OF THE SWITCHBOARD AND
WSJ CORPORA

The experiment described in this section was designed to high-
light the performance attainable on sentences from the Switch-
board corpus relative to that achievable on Wall Street Journal
sentences. We contrasted the language of the two data sets while
removing other ways in which the two databases differ by rec-
ollecting in-house speakers reading both sets of transcriptions.
Six native English speakers read 100 Switchboard and 50 WSJ
sentences using a Sennheiser microphone. Half of the Switch-
board sentences were unique to a speaker and the other half were
common to all speakers. The utterances were verified and those
deemed unacceptable for any reason were discarded.

Read Switchboard
Sub Del Ins Err Words
Spkr-1-Female-Swbd || 169 1.1 37 217 783
Spkr-2-Male-Swbd || 276 86 4.1 403 660
Spkr-3-Male-Swbd [ 19.5 20 32 247 665
Spkr-4-Female-Swbd || 23.9 3.1 72 342 552
Spkr-5-Female-Swbd || 17.1 1.6 54 24.1 744
Spkr-6-Female-Swbd || 16.7 2.1 35 223 623
[ Average || 20.0 3.0 44 275 4027 |

Table 1: Performance on reading Switchboard sentences.

Each set of utterances was decoded using acoustic models
built from WSJ training. We used a trigram model built from
only the appropriate corpus for decoding each of the two sets of
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utterances. The word perplexity of the Switchboard test set was
68, while that of the WSJ sentences was 77.

Read WSJ
Sub Del Ins Err Words
Spkr-1-Female-WSJ || 3.7 0.5 2.1 6.3 934
Spkr-2-Male-WSJ || 7.9 14 1.1 104 710
Spkr-3-Male-WSJY || 4.7 15 0.7 69 802
Spkr-4-Female-WSJ il 95 07 24 126 718
Spkr-5-Female-WSJ {| 41 04 1.0 5.5 700
Spkr-6-Female-WSJ || 62 1.7 13 9.2 776
| Average [ 59 1.0 15 84 4640 |

Table 2. Performance on reading WSJ sentences. The speakers are the
same as those in table 1.

Shown in tables 1 and 2 are the respective error rates on the
Switchboard and WSJ portions of the experiment. In addition to
measuring the overall word error rate, we have looked at error
as function of word type and length, as shown in table 3.

- Category WSJ Read Swbd

% | Error || % [ Error
Function word 35 ] 135 59 | 300
More than 3 phonemes || 56 5.0 29 | 152
1,2,0r 3 phonemes 441 128 || 71 | 323
1 or 2 phonemes 22 | 155 39 | 340
1 phoneme 3 ) 327 8 421

Table 3: Breakdown of error according to word category for the read
versions of Switchboard and WSJ. Shown in the left column of each set
are the percentage of words which fall into the category. In the right
column are the error rates within each category.

The error rates on the Switchboard sentences are consistently
much higher than on WSJ. The major discrepancy between the
two data sets lies in the length of the words; in the Switch-
board transcriptions the average word length is 3.0 phonemes,
whereas on WSJ the average is 4.1 phonemes. Although the
word-level perplexities or average branching factors are compa-
rable, we must branch 35% more often in Switchboard, rendering
the phoneme-level perplexity of Switchboard much higher than
that of WSJ [1].

In addition to comparing the results of the read Switchboard
sentences with performance on WSJ, we have compared the per-
formance on the read and conversational, telephone Switchboard
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data. A common subset of 39 sentence transcriptions was shared
between the test set read for this experiment and the CAIP de-
velopment test set of the November 1994 LVCSR evaluations.
Although this set of 39 sentences is too small to be a reliable
result on its own, it is interesting to note that the performance for
the read data on this set was 32.9%, and for the conversational
telephone data the error was 48.0%.

The abundance of short words in conversational speech is at
the heart of the difficulty in recognizing it, accounting for the
largest increase in error rate incurred in going from read WSJ
to conversational Switchboard. The problem of short words has
been addressed through a scheme of pairing short words to form
longer compound words; this tactic is discussed more fully in {2].

3. THE METHOD OF DIAGNOSTIC TREES

In the experiment described in section 2, we had the luxury of
performing a controlled comparison of the language of conver-
sational speech with the written text of the Wall Street Journal.
In many situations, however, we may not have the ability to
isolate the contribution to the error rate of a single factor. In
order to address the issue of understanding the contributions and
interactions of multiple sources of error in an experiment, we
have developed a general technique for identifying the attributes
which distinguish correctly-recognized word occurrences from
recognition errors. We quantify numerous characteristics both
of the model and of the test utterances as a first step toward
highlighting specific weaknesses in a given experiment.

For each unique word in the vocabulary we compile a set
of measurements related to our ability to model that word ef-
fectively, independent of the context of neighboring words as
well as of the channel. In addition, each utterance in the test
set is characterized by a set of attributes related to the physical
environment of the waveform or to the sequence of words it rep-
resents. These features can be thought of as context-dependent
parameterizations of the test set. Each word in the test set is
then characterized by the union of the context-independent and
the context-dependent attributes.

In addition to being assigned a set of descriptive features, each
word in the test set is assigned a class label, indicating whether or
not the word occurrence was correctly recognized. The context-
independent and context-dependent measurements for the word
together with the class label are compiled into an MxN matrix,
where M is the number of words in the test transcriptions and
N-1 is the number of measurements compiled for each word.

Having assembled this matrix, we build a decision tree for the
recognition experiment as a method of separating word occur-
rences which were correctly recognized from those which con-
stitute recognition errors.  The splits associated with the tree
provide understanding of the major contributors to error in the
experiment and serve as a guide for designing further recogni-
tion experiments. The data are partitioned along coordinate axes.
rendering the tree particularly easy to interpret.

3.1. Feature Selection for Diagnostics

The specific features we model in order to build our diagnos-
tic trees are described in this section. For diagnostic purposes,
the statistics are compiled using the true transcription of each
utterance. Using features compiled from recognition output as a
precursor to predicting where errors have occurred in recognition
will be considered in section 3.2.

Word-dependent (context-independent) features include the
number of phonemes in the word, the number of times the word
occurred in language model training as well as in acoustic train-
ing, and the minimum and average of the number of times the tri-
phones which comprise the word occurred during acoustic train-
ing. In addition, we identify each word as being either “out of
vocabulary,” “non-speech,” or “other.”

The most informative of the context-dependent features has
proved to be a word-level acoustic score, which is calculated
by aligning a transcription to the corresponding acoustic models
and averaging the log likelihoods of those frames aligning to
any state within a given word to form the score for that word.
Other contextual features include the likelihood of the sentence
according to the language model normalized by the number of
words in the sentence, an estimate of the signal-to-noise ratio, and
the speaking rate, measured in terms of vowels per second as well
as words per second. Phonemes per second was also considered
as a measure of speaking rate but was not as good in predicting
errors as the other measures. Finally, we include a smoothed
score reflecting the number of times each word in its particular
left and right context in the test set occurred in language model
training. This feature, chosen to resemble the statistics used by
the decoder, is given by («L2+ L3)(aR2+ R3) where L2 (R2) is
the frequency of observing the word and its left (right) neighbor,
L3 (R3) is the frequency of observing the word with its two left
(right) neighbors in language model training and « is a back-off
constant. We have used a = 0.1 in our experiments.

As an example of a diagnostic tree we show in figure 1 the
resuiting analysis of our best performance on the Switchboard
corpus to date [2]. The numbers at each leaf of the tree are the
fraction of correctly-classified words mapping to that leaf. In
this tree the word-level acoustic score is the main determiner of
performance. The leaf with the best recognition accuracy (91%)
represents those words which are long (4 or more phonemes),
are spoken at a rate of less than 5.2 words per second, have a
trigram occurrence score of more than 5.5, and have a word-level
acoustic score greater than -4.33. Conversely, the words which
have the lowest chance of being correctly recognized correspond
to word-level acoustic scores less than -4.33, a trigram coverage
score of less than 55.7, and are part of a sentence which has a lan-
guage model likelihood of more than -2.61 but were themselves
observed fewer than three times in acoustic modeling.

On occasion we have found it useful to include additional fea-
tures in the analysis. This can easily be accomplished by adding a
column to the existing matrix corresponding to the new attribute.
Two features which proved to be informative from a diagnostic
standpoint, as well as important in determining whether or not
a word would constitute a recognition error were the identity of
the speaker and a binary-valued variable indicating whether or
not the adjacent word was correctly recognized.

Conversely, one may want to see the effect of excluding a
feature from the input to the decision tree growing algorithm
since a chosen split masks all others, even close contenders.
For example, when we excluded the word-level acoustic score
from consideration in building the tree of figure 1, speaking rate
appeared as the first split in the resulting tree. This suggests that
the underlying cause of the poor acoustic scores is rapid speech
and the poor articulation which generally accompanies it.
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Figure 1: Tree resulting from decoding the males in the CAIP development test set with 66 hours of acoustic training. The true transcription of
each utterance was used to discover the features. hmm.word is the word-level acoustic score. trigram is the backed-off measure of local coverage
in language model training. gram is the sentence perplexity. wrate is a global estimate of speaking rate in words/sec. phonemes is the number of
phonemes in each word. LM is the number of occurrences of the word in language model training. AM is the number of whole-word occurrences in
acoustic training.
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Figure 2: Tree corresponding to decoding the males in the CAIP development test set with 66 hours of acoustic training, built for assessing confidence in
the recognition. The recognition hypotheses were used to discover all features. ws.score is the weighted wordspotting score. ws.freq is the unweighted
wordspotting score. hmm.word is the word-level acoustic score. gram is the sentence perplexity. trigram is the backed-off measure of local coverage
in language model training. phonemes is the number of phonemes in each word.
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Figure 3: Errors in predicting whether a word is correct or incorrect
as a function of the amount of data considered, considering nodes in the
tree in order according to their purity.

3.2. Confidence Measures Through Diagnostics

In diagnosing the major sources of error in a particular experi-
ment, we use the true transcription to derive features upon which
to base our diagnostic tree. In addition to providing understand-
ing, however, we would like to use the trees for predicting errors
or assessing our confidence in the recognition output. In order
to do so, we must be able to derive a meaningful set of features
from the recognition rather than from truth.

The features described in section 3.1 are attributes which
may be estimated using recognition rather than truth. For each
unique word in our recognition output we measure the number
of phonemes, the amount of language model training, the min-
imum and average triphone coverage as well as the number of
whole-word occurrences in acoustic training, and whether or not
the recognized item is non-speech. Aligning the recognition hy-
pothesis to the acoustic models generates a word-level acoustic
score for each word occurrence. By evaluating the language
model we generate a sentence-level grammar score, and by the
smoothed counting procedure outlined above we obtain local lan-
guage model scores. We count the number of vowels and words
in the hypothesis to derive estimates of speaking rate. Our SNR
estimate does not rely on word identities.

In using a diagnostic tree for quantifying confidence in the
recognition output, we have found two additional features to be
helpful. These were not included in building trees for diagnostic
purposes, as they provide little insight into the underlying causes
of the errors. The additional features are wordspotting scores,
calculated from the unweighted and weighted frequencies of each
word in the recognition output in an N-best list. In our experi-
ments we let N=100 and take the weights to be the decoder score
of each hypothesis.

In figure 2 we show a diagnostic tree generated for the purpose
of assessing confidence in the recognition. All features were de-
rived from the recognition hypotheses. The new wordspotting
features demonstrate much predictive power about the correct-
ness of the hypotheses.

A diagnostic tree may be viewed as a density function which
generates the probability of a word being correctly recognized
given the recognition-dependent observations. Each leaf in the

tree assigns to all words mapping to it a probability of being
correct which is equal to the relative frequency of correctly-
recognized words mapping to that leaf. Therefore, for each word
hypothesized in recognition, we can assign an a posteriori prob-
ability of that word being correct. The individual scores indi-
cate a confidence in our hypotheses beyond that possible through
recognition scores alone.

Furthermore, we can form estimates of the incorrect words in
a recognition hypothesis based on the probability of being cor-
rect given by the leaves of the diagnostic tree. Shown in figure 3
is a plot of the error incurred on the training data in predicting
from the tree in figure 2 whether a word will be correctly or
incorrectly recognized as a function of the number of predictions
made. Initially predictions occur only at the leaf with the high-
est purity; subsequently lowering the threshold on node purity
required before a prediction will be made increases the percent-
age of the test set for which a prediction is formed at the cost of a
higher prediction error rate. The prediction error on the training
data is 26.1% when all of the data is considered. When predic-
tion is performed on all of the words in an independent test set
of the features the error is 26.8%. Based only on the weighted
wordspotting score the error on the training data is 30.2%. How-
ever, in the latter case, although setting thresholds on the score
does provide a means of selecting subsets of the data on which to
base predictions, direct use of classification error as a means of
selecting the subsets for performance prediction is not possible.

4. CONCLUSION

In this paper we have reported the results of a diagnostic ex-
periment which compared the recognition performance achieved
on read Switchboard transcriptions with that achieved on WSJ
sentences. We have observed a large increase in error rate on the
Switchboard sentences, attributable chiefly to the shorter average
word length on that corpus.

The remainder of the paper presented the technique of diagnos-
tic trees for identifying the chief sources of error in a recognition
experiment. The technique is provides understanding about the
causes of error in a given experiment and therefore direction in
designing the next experiment. Furthermore, it enables a measure
of confidence in the recognition hypotheses.

We have envisioned several ways to incorporate the technique
into our recognition system. As mentioned in the previous sec-
tion, the diagnostic tree may be viewed as a density function,
generating an-estimate of the probability of being correct for
each hypothesized word in an N-best list. The product of these
likelihoods normalized by the number of words in the hypothe-
sis could then be used to re-order the list. Similarly, diagnostic
trees could prove useful in selective speaker adaptation, where
the adaptation is based only on regions of hypothesized text in
which we have high confidence. Another application of the tech-
nique lies in language modeling, where we might want to retreat
from a trigram model when we are unsure of the output in hopes
of a quick recovery from likely errors. Exploring these applica-
tions is the focus of our current research.
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