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ABSTRACT

We report on research into the discrete-word speech
recognition performance of several specialized language models
optimized for four large domains of professional discourse. We
describe the construction of these models and report perplexity
and recognition results for each of the specialized domains.
The data indicate that such specialization may significantly
improve performance both before and after adaptation.

1. JUSTIFICATION

New users of Dragon's large-vocabulary discrete-
utterance speech recognizer typically achieve an "out-of-the-
box" performance of about 85% on their first 1000 words
(including out-of-vocabulary words) on a wide variety of topics.
With full adaptation the acoustic error rate soon falls typically
to around 5%.

In the worst case, however, the perplexity of a
dictated text can be so seriously misrepresented by an over-
generalized language mode! as to extend the adaptation time
considerably. Errors attributable to mismatches in word
frequency are only one problem. Much more costly are the
words that never appear in the language model at all. In some
texts the new word error rate can exceed the acoustical error
rate.

Of course, the vocabulary can be increased in size, but
this only increases the chance of acoustical and perplexity
related errors. How much improvement can be made instead by
building a language model using a small amount of added
information about the person dictating; what, more or less, is
his or her field?

In this paper we will describe the building and testing
of language models targeted towards specific fields. Section 2
describes our technique of combining n-gram statistics extracted
from various sources into domain-specific language models. In
section 3 we describe our testing methodology and in section 4
we present our results,

2. LANGUAGE MODELS

For the sake of this preliminary study, we used a bigram
language model. In this set of experiments, the statistics for
some of the less common words were combined to save
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memory.
The vocabulary size studied was 30,000 words, with
a backup dictionary of 120,000 words. The domains used
were:
1.  General (not targeted).
2. Journalism (target: journalist for newspaper or
newsmagazine).
3.  General Legal (target: lawyer or paralegal).
4. General Medical (target: physician or transcrip-
tionist).
5. General Business/Financial (target: financial analyst
or executive).

The language is American English. For the General
vocabulary, we used a word model which had previously been
shown to have high performance on a wide variety of topics,
and in fact was built using a significant amount of source
appropriate for each of the other vocabularies. Note that,
although domains 2 - 5 are more restricted than a completely
general vocabulary, there is ample room for a large amount of
variation.

2.1. Building the Vocabularies

We collected and parsed several gigabytes of text from
over 2000 sources. A unigram and bigram frequency list were
produced for each source. This source data varied widely in
terms of quality and applicability to any particular specialized
language model. In order to construct vocabularies from these
sometimes less than ideal building blocks, we developed a
technique called 'targeting'. Targeting enables a small unigram
model to bootstrap a larger one.

Targeting makes use of the EM algorithm {1] to
estimate which weighted mixture of the source unigram lists
would most likely produce a given "target” list. The quantity
minimized is the unigram perplexity of the target list given the
mixture vocabulary. Unigram perplexity was used rather than
bigram perplexity because it was easier to calculate and because
the results were expected to be similar.

2.1.1. Target Model

We first built small domain-specific “target” unigram lists,
using text judged by humans to be as close to our targets as
possible. We attempted to attain a balance of varied texts,
while keeping within the definition of the targets. The
balancing was also done mostly by human judgement, in some
cases supplemented by rudimentary usage statistics.
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2.1.2. Clustering

An initial test of the targeting algorithm revealed that
the technique returned suspicious results if the source data were
divided into too many separate unigram lists. In response, we
added together the unigram and bigram frequency lists (ex-
tracted from our source texts) into a few dozen topic clusters.

The contents of these clusters were different for each
vocabulary. Texts which were off-topic were combined into a
smaller number of clusters than those related to the specialized
domain. For instance when targeting the legal vocabulary,
different kinds of legal documents were put into different
clusters, while for other vocabularies, they were all combined
into a single cluster.

2.1.3. Mixing the Clusters

Finally, the unigram and bigram clusters were com-
bined with the weights suggested by the EM algorithm. The
unigram frequencies were smoothed by adding a number
between 0 and 1 such that the total number of words kept would
be slightly more than the total number desired. [2]

3. TESTING METHODOLOGY

3.1. Comparing the Domains

The distance between the unigram language models
was measured. Assuming the models used are roughly correct
for the domains, this should be an approximation of the distance
between the domains themselves. The measure used was the
symmetrical Kullback-Leibler distance between models @ and

2
KL--;—E [(P(Q,)-P(Q', )logP(Q,)-1ogP(Q’ )]

The results are summarized in Table I. From this data, the
Business and Law unigram models are seen to be quite similar,
while the Medical model is the most distinct.

3.2. Language Model against Test Texts.
3.2.1. Unigram tests

Two types of tests were used. First, the unigram
language models were tested directly against sample texts. For
this test, many test texts were used for each domain. A number
of statistics were collected, including the number of words in
each test text not contained in the first N words of the language
model, as well as several measures of perplexity (entropy) of
the resulting unigram language model [3], [4]. The measures
of perplexity used differ in the treatment of out-of-vocabulary
words:

a) Known-word perplexity: Out-of-vocabulary words
are ignored in the calculation of perplexity.

b) New-word perplexity: Out-of-vocabulary words are
given a value of one-half the smallest frequency for
any word in the (possibly truncated and/or scaled)
language model,

¢) Common perplexity: Only words which are in all
language models being tested contribute to the
perplexity computation.

Each of the sample texts was tested against each of the five
vocabularies.

Table I: Known-word Kullback-Leibler Distances

Between Unigram Models
Jou 47 0
Bus .66 .39 0
Law .61 .46 22 0
Med .89 .79 .81 91
Gen Jou Bus Law 1

3.2.2. Recognition Tests

In a second series of tests, we compared the
recognition performance on recorded speech using different
language models. The starting acoustic models and all other
parameters remained constant. Here again several types of tests
were made:

1) In the first type of test, initial recognition
performance on each recording was tested with both the
acoustics and the language model completely untrained.

2) Adapted recognition was assessed using a
“jackknife” test. In this case, the recognition results were
reported after the acoustic and language models had adapted to
other subject-related scripts recorded by a particular speaker.

We have made an effort to use predictive measures in
stating performance. In particular, out-of-vocabulary words are
considered errors, as well as words which have a different case
from what was recognized. For instance, “an” (an article),
“An” (a proper name) and “AN” (an acronym) are considered
different words, even though at the beginning of a sentence the
first two will appear identical. To this end, we quote an
estimate of an additional statistic, which we term "Estimated
Throughput.” This represents the percent of utterances (or
utterances plus keystrokes) which are devoted to dictation, as
opposed to corrections, assuming all corrections are done by
voice. Assuming a correction utterance takes about the same
amount of time as a text utterance, this would be a measure of
how fast the user can dictate.
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To make an estimate of this figure, we make the
approximation that all errors of the same type take the same
amount of utterances or keystrokes to correct. The formula
used is

ET. i
N*-(l' C)*(3' 0)4»(5'3)*(8' U)

where N is the number of text utterances, C represents the
number of errors in which the correct word ends up on a
Choice-List, from which it can be selected by a single utterance
or keystroke; O is the number of errors in which the correct
word is considered but does not make the Choice-List; B
represents the number of times the correct word is not
considered but is available in the Backup Dictionary; U is the
number of tokens which are completely missing, and typically
have to be typed or spoken letter-by-letter. The weights on
these factors represent the average number of keystrokes
required to correct each type of error.

Whenever possible, test texts were drawn from
different corpora from those used for targeting or source, and
of course, the same text was never used for any two of the
targeting, source, or test sets. Note that this differs from the
traditional methodology in which the source and test texts are
drawn from the same corpus. The reason is that we wanted to
guard against making the specialized vocabularies too narrow,
thereby artificially inflating performance results.

3.2.3. Correlation of Tests

Since the unigram testing is so much cheaper, it is of
interest to try to determine what relevance it has to results of
recognition tests. In preliminary tests, new word errors were
found to be a good predictor of recognition performance, and
change in perplexity between language models was found to be
a good predictor of improvement in recognition performance.

4. RESULTS -

A set of vocabularies was built, and the two types of
tests mentioned above were run on some data. Both tests were
run on data thought to be fairly close to the intended target.
These include:

® General: previously tested against a large variety of
articles on different subjects.

® Journalism: articles taken from different sections of
11 different newspapers, articles from news-
wire services.

® Legal: circuit court opinions, software licenses,
briefs

® Medical: radiologists’ patient records, published
articles, patient notes

® Business: agreements, financial reports, letters

For initial testing of the language models, a large
number of test texts were used. However, for this article,
results for both language-model and recognition tests are
reported for only those texts for which scripts have been
recorded. These consist of from 3 to 8 diverse texts in each
domain, each containing approximately 500 to 1200 words.

We report in Table II the results of the common
perplexity test on 30,000 word vocabularies. This test ignores
the effect of words unknown in at least one language model. In
Table III we report the new word error raté. In all cases, the
lowest perplexity and new word error rate on a given test
domain was achieved by the corresponding specialized language
model. Similar results were obtained when the vocabularies
were expanded to 120,000 words. On the domain-specific
texts, the General language model has a mean new-word error
rate of 2.29% at 120,000 words, while their corresponding
Specialized language models achieve a mean rate of 1.04%.

Results for “out-of-the-box” recognition tests are
shown in Table IV. Results of testing with partially adapted
acoustics and word models are shown in Table V. Table V also
shows the mean number of words on which adaptation took
place before testing. In both tables, the results for the
specialized text shown in the left column are described under
the heading "Special.” In general, the improvements resulting
from the use of specialized vocabularies seem to continue, at
least after moderate adaptation. In fact, for the Journalism and
Legal test sets, the observed difference between the Specialized
and General models is actually larger after adaptation. This
may be due to acoustic effects on the unadapted models, rather
than language-model effects.

Table II: Mean Common Perplexity for
Unigram Models at 30,000 Words

II Language Models
=¥I Gen Bus _____J_._Iou Law Med
T | Gen [} 1226 | 1836 1346 | 1698 | 1739
: Bus | 1697 | 1315 1715 | 1635 | 2411
EI‘ Jou 1263 | 1684 1094 | 1565 | 2062
i‘ Law || 1558 | 1241 1534 | 1104 | 1998
s { Med |} 1186 | 1589 1325 | 1498 | 876
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Table III: Mean Percent Unknown Words
for Unigram Models at 30,000 Words

Language Models

Jou I_Law Med

Gen Bus |
T| Gen || 2.24% | 3.41% |2.56% | 3.21% |3.77%
Bus | 325% | 1.51% |2.62% | 1.82% |3.83%
T |ou | 420% [ s501% |3.44% | 4259 |7.00%
X | Law | 193% | 153% |235% | L17% | 3.44%
s | Med || 6.67% | 10.40% | 10.25%| 10.29% | 2.30%

Table IV: Mean Word Percent Correct and
Estimated Throughput for Unadapted Models

Percent Correct

Est. Throughput

Special General || Special | General
Bus 84.51% | 83.61% [|78.49% | 72.83%
Jou 83.49% | 83.44% ||73.40% | 71.55%
Law 88.37% | 87.39% ||82.41% | 78.25%
Med 88.17% | 82.91% [178.35% | 65.63%

Table V: Mean Word Percent Correct for
Partially Adapted Recognition

Special General I # of Words
| Adapted-on

Bus 88.36% | 87.93% 2020

Jou 87.31% | 86.51% 2128

Law 92.37% |91.27% 2030

Med 92.64% | 90.00% 1391

5. CONCLUSIONS

We have shown that the performance of large-
vocabulary speech recognition systems can be markedly
improved by the use of domain-specific language models in
unadapted and partially adapted systems. It is our expectation
that this improvement will also be maintained in systems which
have been fully adapted acoustically (results for these further
tests are not yet available). This means that users in these
specific domains can immediately obtain better "out-of-the-box"
performance and can reduce the time required to customize
their vocabularies. The medical vocabulary, which is the most
distinct, benefits the most from a language model which is very
different from that of the other domains. The figures shown
are based on a relatively small amount of data, but are very
conservative. For the typical user, whose dictated texts are
likely to be more uniform than our test texts, the fully adapted
performance is likely to be considerably higher than quoted
here. We also suggest the use of a new measure, Estimated
Throughput, as a measure of recognition performance.
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