ON THE USE OF SCALAR QUANTIZATION FOR FAST HMM COMPUTATION

Shigeki Sagayama

and Satosh: Takahashi

NTT Human Interface Laboratories
1-2356 Take, Yokosuka-shi, Kanagawa, 238-03 Japan

ABSTRACT

This paper describes an algorithm for reducing the
amount of arithmetic operations in the likelthood com-
putation of continous mixture HMM (CMHMM) with
diagonal covariance matrices while retaining high per-
formance. The key points are the use of the scalar
quantization of the input observation vector compo-
nents and table look-up. These make multiplication,
squaring and division operations entirely unnecessary
in the whole HMM computation (i.e., output probabil-
ity calculation and trellis/Viterbi computation). It is
experimentally proved in an large-vocabulary isolated
word recognition task that scalar quantization into no
less than 16 levels does not cause significant degra-
dation in the speech recognition performance. Scalar
quantization is also utilized in the computation trun-
cation for unlikely distributions; the total number of
distribution likelihood computations can be reduced by
66% with only a slight performance degradation. This
“multiplication-free” HMM algorithm has high poten-
tiality in speech recognition applications on personal
computers.

1. INTRODUCTION

The HMM state output probability (more accurately,
“probability density”) is often the most computation-
ally expensive part of HMM-based speech recognition.
In typical cases of an actual speech recognition sys-
tem, it consumes 45-65% of the time for entire speech
recognition in contrast with LPC cepstrum analysis
which consumes only 0.8%. Codnventionally, the dis-
crete HMMs based on VQ (vector quantization) have
been considered as a fast HMM method, although it
still requires a considerable number of distance com-
putations and the performance may be slightly lower
than that of CMHMMSs. This paper aims both at real-
izing the high performance inherent in CMHMM and
low computational cost by cutting down arithmetic op-
erations through the full use of scalar quantization.
The key idea of this paper came up as follows. It
has been experimentally shown that 10-th order LSP
parameters with 4-bit quantization can represent LPC
speech spectra at an average spectral distortion of 0.77

Authors’ E-mail addresses: {saga,taka}@nttspch.hil.ntt.jp

dB[1]. Since cepstrum is even more advantageous than
LSP in terms of logarithmic spectral distortion (accord-
ing to Parseval’s theorem), it is expected that 4-bit-
quantized cepstral coefficients are sufficient in repre-
senting the input speech features for speech recogni-
tion.

2. HMM STATE OUTPUT PROBABILITY
COMPUTATION

In continuous mixture HMMs (CMHMMs) with diag-
onal covariance matrices, whether in tied or non-tied
mixture structures, the output probability, bs(x¢), of
state s for the given p-dimensional input observation
vector, x = (z1,Z2," " ,a:p)T, is described by:

bs(x:) ,
= z wkst(xt)

k€K,

1 EL (25 — pii)?
Z Wi 3—————}, exp {—z —_20’12“-

k€K, H 2nal, =1
=1

where K, denotes the subset of individual distributions
consisting of the mixture probability density for state s,
and wy, denotes the mixture weight coefficient in state
s for the kth individual normal distribution, Ni(x:),
with mean, g, and variance, oZ;, for each observation
vector component, ;. In practical systems, this prob-
ability is often calculated in the logarithmic domain,
since its (sign-inverted) logarithmic expression is sim-
plified in the form given in Egs (1,2).

In these equations, Ay; (i = 1,2,-+-,p), Bk, Wi, (8 =
1,2,---,8) can be computed beforehand for all k =
1,2,---,K. The “addlog” operation (an operator :
(log S~ exp), i.e., addlog(z, y) = log(exp z+expy)) can.
be well approximated by the larger value or by log-table
look-up and a few additions if their values are close to
each other [2], i.e.,

T if z>y
z+log(l+e¥™) if 22y
y+log(l+e*Y) if 2<y
Y if <y

addlog(z,y) =

213 0-7803-2431-5/95 $4.00 © 1995 IEEE

—log value of normal distribution N (x.)

A

V.

nY

4 2 14
Ti— pri)® P 1
—logbs(x) = log Z exp { Z%—i—gbg%ﬁi—é—Zlogaii — log wis
kEK, izl ki i=1 | —-VW;._.
“addlog” operation Quil=:) B
P
= addlog { Z Ari(z; — ;l,ki)z + B, + Wks} (1)
kEX, =1

1 1
where A = =, i=1,2,-+-,p; Bk=glog27r+5210g0ﬁ,-§ Wis = —logwi,, s =1,2,---,5 (2)

20,

’
1

i=1

which requires a log table for values between 1 and 2.

3. SCALAR QUANTIZATION FOR FAST
HMM COMPUTATION

3.1. Algorithm

The most computationally intensive part of HMM can
be alleviated by table look-up if the input vector is
scalar-quantized, i.e., the quantized value, Z; is chosen
from &;;(j = 1,2,---,q) for each vector component,
z; (¢t = 1,2,---,p), and if the values of a quadratic
form, Qri(&i;) = Awi(€ij—pr:i)?, for discrete values of z;
have been calculated beforehand and stored in a table.
The required arithmetic operations are as follows:

Pp(x) = ZQki(i'i)+Bk (3)

i=1

- IOg bs(x) = a'dd]-Og {Pk(x) + Wks} (4)
kEK,

which include only table look-ups and additions, and
no multiplications/squares or divisions. The entire pro-
cedure is summarized in Figurel.

After spectral analysis (e.g., LPC cepstral analysis),
scalar quantization can be rapidly executed simply by
float-to-int conversion or, in the case of non-linear
quantization, by a binary search algorithm. This is
the big advantage of scalar quantization and is essen-
tially different from vector quantization which requires
a number of distance calculations.

Table 1 compares the required amount of arithmetic
operations for all states per frame required by different
approaches to HMM output probability density com-
putation. (Often in practical HMM operation, only
“active” states are calculated every frame.) It is seen
that the proposed method requires few arithmetic op-
erations.

3.2. Experimental evaluation

The algorithm was implemented and tested on an iso-
lated word recognition task with a vocabulary size of

2620 words using 524 words each uttered by 4 dif-
ferent speakers. The speech analysis conditions were
12kHz sampling, a 256-point Hamming window with
8ms frame shift, 16-th order LPC analysis, 33 feature
parameters including the delta log power and the 16
LPC-cepstral and delta-cepstral coefficients.

For simplicity, the quantizer design was done by
equally dividing into ¢ levels the approximate param-
eter distribution range of each feature vector compo-
nents, zy; (1 =1,2,---,p), given by:

k___ln,mz’r.{_’K(#ki — 30ki), k={I’12%3-_>E,K(#ki + 30%:)

to determine o and G in the quantization rule:
int{ai(:ct,- — 51)}

Alternatively, one can provide a set of non-uniform
scalar quantizers for better performance, considering
the feature component distribution densities and using
a fast binary search algorithm.

Table 3 shows the average word accuracy as a func-
tion of scalar quantization resolution, g (i.e., the num-
ber of quantization levels). No performance degrada-
tion is observed for quantization levels down to ¢ = 186.

4. SCALAR QUANTIZATION FOR LOW
PROBABILITY TRUNCATION

4.1. Algorithm

Obviously, if any of term in Eq. 3 is large, the log
probability of the distribution also becomes large which
equivalently means a low value of distribution proba-
bility Mx(x). Since a very low output probability is
unlikely to contribute to the state output probability
(Eq. 4) and total HMM likelihood accumulation (i.e.,
trellis or Viterbi), this irrelevant computation can be
neglected without completing the full computation of
Eq. 3. This situation is entirely predictable from the
scalar-quantized values of the input vector. In a practi-
cal implementation, the scalar-quantized input compo-
nents refer to a table (which is, actually, a bit pattern)

214

(V]

. Compute discrete values &;;, (1 =1,2,---
3. For all Gaussian distributions (k = 1,2,:--,

levels &;;,(: =1,2,---,p; j=1,2,--
1a2,"'1p; j=1,2,"'7‘1§ k=1,2a

4. For all Gaussian distributions (k = 1,2,--
table.
1’ 2’ Y 2

Sr_y Qui(24) + By
7. For all states (s = 1,2,:-,

1. Design a scalar quantizer for each each of feature vector components.
'y J =12,
K), for all vector components with all possible quantization
" q) of the observation vector x;, compute Qi(£;;) =

, K) and memorize them in a (qu)-word table
-, K), compute By, = Blog2r+3 Y7
S), and for all mixture components (k=1,2,---,K),
compute the sign-inverted logarithmic mixture weights Wy, = — log wy, and memorize them in a K S-word

in a K-word table. Also, for all states (s =1,2,---,

5. For every input frame, scalar-quantize the observation input vector to obtain discrete values 4, @ =

6. Refer to the table to obtain Qii(%x), * = 1,2,---,K,
S), do “addlog” operations:
obtain the mixture probabilities. The resulted output probabilities are shared by distinct allophones or
phonemes. To further reduce the addlog operation, it can be approximated by “max”.

,q) of components of x levels.
)2 .
(f‘lzait:.) , (i=

, log o, and memorize them

i = 1,2,---,p and compute Pp(x;) =

—logbs(x;) = addlogeek,{ Pe(xe) + Wi } to

Figure 1: The procedure of fast HMM output probability computation based on scalar quantization and table

look-up

1. 2. 3. and 4. (Same as Figure 1.)

“outside” the distribution k.

1,2,---,p. (Same as step 5 in Figure 1.)

pattern indicating “active” distributions.

5. For each of all vector components with all possible quantization levels &;;, (¢ = 1,2,---
create a K-bit word, BitTable[i] [j1, whose k-th bit represents with 1 or 0 whether ¢;; is “inside”

6. For every input frame, scalar-quantize the observation input vector to obtain discrete code values Zy;, =
P
7. Take the bitwise logical AND operation of bit patterns, Pattern = /\ BitTable[:] [Z4], to obtain a bit

8. Apply steps 6 and 7 in Flgure 1 to the k-th distribution only if the k-th bit of Pattern is 1. Otherwise,
give a large constant to the sign-inverted log likelihood.

P j=112,""q)a

=1

Figure 2: The procedure of truncation of HMM output probability computation based on scalar quantization

and quickly check whether they are all within the rel-
evant range or not, referring to a truncation table (bit
pattern). If any input vector component is found out-
side the relevant range, Eq. 4 is substituted with a fixed
large value. The summary of the procedure is shown
in Figure2.

A similaridea based on vector quantization was pro-
posed by Bocchieri[3] though it still required large com-
putational cost for distance computation, unlike our
approach.

4.2. Experimental evaluation

This technique was tested on the same task as that
in the previous section. For the i-th vector compo-
nent, whether “inside” or “outside” the distribution %
was determined as whether inside or outside the range
(prs £ 50%;) in this experiment.

Table 3 compares the numbers of actual occurences
of evaluating distribution probabilities throughout the
task of 2620-word speech recognition using 524 utter-

ances per speaker. Only slight performance degrada-
tion is seen in the “truncated evaluation”, while the to-
tal number of arithmetic operations has been cut down
by 65%.

5. CONCLUSION AND DISCUSSION

This paper proposed the use of scalar quantization to
completely eliminate multiplication (or squaring, divi-
sion) operations from the whole HMM computation
and to dispense with irrelevant probability computa-
tions. The idea was implemented and tested on a large-
vocabulary word recognition task. We determined that
16-level scalar quantization is sufficient to assure high
recognition performance. 65% of the distribution prob-
ability computation can be cut without any significant
performance degradation.

Being entirely “multiplication-free”, this approach
has high potentiality for various applications. Since
HMDM-based speech recognition can be done mainly by
fixed-point addition and subtraction operations only,

215

Table 1: The number of arithmetic operations required for HMM output probabilities for all states per frame

muitiplication, | addition and | table typical count of
and division subtraction | access || arithmetic operations f
Discrete (VQ-based) HMM g g S 32768 x, 32768 +
Discrete (Tree VQ-based) HMM 2plog, q 2plog, q S 640 x, 640 +
Continuous Mixture HMM 2pK 2pK +3MS 0 128000 x, 135200 £+
Scalar-Quantized CMEMM (proposed) 0 pK +3MS pK 71200 +

where p = observation parameter vector dimension, ¢ = VQ codebook size, K = the total number of Gaussian
distributions, S = the total number of states, M = the number of mixtures for each state. tA typical case is
estimated with p = 32,¢ = 1024, K = 2000, M = 4,and S = 600.

Table 2: Speech recognition performance with scalar-

quantized HMM computation (evaluated using speaker-

independent 2620-word recognition tested by 4 (2 male + 2 female) speakers each uttering 524 words).

quantization no

scalar-quantized

resolution quantization

64 levels | 32 levels | 16 levels | 8 levels

word accuracy (%)
(averaged over
4 speakers)

85.4

85.1

85.2 85.7 81.2

Table 3: Comparison between distribution evaluation counts in full and truncated evaluations in typical isolated
word recognition (2620-word recognition tested using 524 words uttered by each of 4 (2 male + 2 female) speakers

with 64-level scalar quantization)

full evaluation truncated evaluation reduction
speaker eval count | word accuracy (%) | eval count | word accuracy (% rate
MMS (male) 82243200 85.1 28086072 84.5 0.66
MMY (male) 85662720 80.5 25915436 79.3 0.69
FKS (female) 89856000 86.5 32204265 85.5 0.64
FYN (female) || 100089600 88.4 34716610 87.4 0.65
| average |] 85.1]] 84.2 | 0.66 |

except for the speech analysis stage, this algorithm best
fits small computers without a floating point acceler-
ator or parallel processing capability. (As for mod-
ern engineering workstations equiped with highly so-
phisticated pipelined floating-point arithmetics, float-
ing point operations may be rather faster than table
look-up.) This idea can be also helpful in the design of
speech recognition LSI chips and algorithms for fixed-
point DSPs.
Future works will include:

¢ Optimization of quantization levels for cepstral
components depending on their distributions. Non-
uniform scalar quantization may increase the per-
formance.

e Combination with the four-level tied-structure
HMMs[4] which can share computed results in the
parameter, distribution, state, and model levels.

6. ACKNOWLEDGEMENT

The authors would like to thank Nobutoshi Shida, Waseda

University, for his contribution in implementation and

evaluation of the algorithm during his work experiance
at NTT in the summer of 1994, and Takatoshi Jit-
suhiro, NTT Human Interface Labs, for providing us
HMM-related software modules.

7. REFERENCES

(1] F.Itakura and N. Sugamura: “LSP Speech Synthesizer,
Its Principle and Implementation,” Technical Report of
Acoustical Society of Japan, §79-46, pp. 349-356, Nov.
1979. (in Japanese)

[2] E. E. Schwartzlander, Jr. and A. G. Alexopoulos: “The
Sign/Logarithm Number System,” IEEE Transactions
on Computers, C-24, pp. 1238-1242, 1975.

(3] E. Bocchieri: “Vector Quantization for the Efficient
Computation of Continuous Density Likelihoods,” Proc.
ICASSP93 (Minneapolis), pp. II-692-695, 1993.

[4] S. Takahashi and S. Sagayama: “Four-Level Tied Struc-
ture for Efficient Representation of Acoustic Modeling,”
Proc. ICASSP95 (Detroit), this issue.

216

