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ABSTRACT

An optimized hidden Markov model (HMM) with two
kinds of inter-frame dependent observation structures,
both built on the observation densities of a first-order
dependent form, is presented to account for the statistical
dependence between successive frames. In the first model,
the dependence relation among the frames is determined
optimally by maximizing the likelihood of the
observations in both training and testing. In the second
model, the dependence structure associated with each
frame is described by a weighted sum of the conditional
densities of the frame given individual previous frames.
The segmental K -means and the forward-backward
algorithms are implemented, respectively, for the
estimation of the parameters of the two models.
Experimental comparisons for an isolated word
recognition task show that these models achieve better
performance than both the standard continuous HMM and
the bigram-constrained HMM.

1. INTRODUCTION

It has been well known that a major limitation to the stan-
dard HMM’s in the modelling of speech signals is the
state-conditioned independence assumption, which results
in a loss of information about the temporal correlation be-
tween successive frames. The improvement of the conven-
tional HMM approaches by incorporating some kind of
modelling of the dynamic features has aroused much inter-
est in recent years. The best-known approach is the addi-
tion of the 1st and 2nd time derivatives of the frame vec-
tors. In [1] Kenny et al proposed a linear predictive HMM
in which the frame sequence is modelled by a vector-
valued AR process; Wellekens [2] and Paliwal [3] de-
scribed, respectively, the HMM’s with bigram constrained
observations. More recently, direct scoring for segments
rather than for individual frames has also been studied in
the hybrid neural net / HMM [4] and two-dimensional (i.e.
time-frequency) cepstral HMM’s [5]. Some other ap-
proaches dealing with the same problem can also be
found, e.g., in [6] where the recurrent neural networks
were used to capture the sequential constraint and in [7]
where explicit use of templates was suggested to represent
the states.
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In this paper we propose a new approach for incor-
porating the statistical dependence between successive
frames in the HMM framework. The basic principle of this
approach which differs from the previous ones is that the
temporal correlation structure in an acoustic sequence is
determined optimally together with the HMM parameters
under the same criterion for model estimation. This is op-
posed to first specifying some temporal structure (e.g., the
frame-lag [1-3] or frame-segment [4][5] structures) and
then estimating the model parameters given these specifi-
cations. The joint optimization, with respect to both the
temporal structure and the model parameters associated
with it is, therefore, the major characteristic of our models.
In this paper we will focus on the application of this prin-
ciple to the HMM’s with first-dependent observations.
Two forms of the model based on the maximum likelihood
criterion are investigated.

2. HMM’S WITH INTER-FRAME DEPENDENCE

Denote by x=(x;, ---, x7) a sequence of observed frame
vectors and A the parameter set of an HMM.

Model 1. For the first model, the density function of x,
given the state sequence s=(s;, ---, 5y), where
s,€{l, -, M} and M is the number of the states, is
defined as

T
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where b, (x,Ix,( n) is the observation density of the frame
vector x, from state s,, which is assumed to be dependent
on some previous frame x.,,, 7(f)<t. The time-lag se-
quence 7= (7(1), ---, 7(T)) then characterizes a temporal
dependence structure in the observed sequence, which is
optimized together with the spectral structure (character-
ized by the state sequence) in both training and testing.
Eqgn. (1) can be viewed as a general representation
of the bigram-constrained HMM’s. Although in each
individual sequence the occurrence of one frame is most
likely to depend on its immediate previous frame, the same
dependent event-pairs, occurring in different sequences,
may have different time intervals due to variations in
speaking rate. The model (1), then, provides an explicit
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way of handling this variability. This was found to provide
an enhanced robustness in our earlier experiments using a
simpler version of this model [8]. For convenience, we call
this model the dependence-optimized model.

Let A=(m A,B) be the model parameter set,
where A= la;] is the M x M state transition probability
matrix, m=[x;] is the Mx1 initial state probability
vector, and B ={b;: 1<i< M} is the observation density
set where each b; is defined on R¥ xRX (K is the
dimension of the frame vector). For the model given by
(1), we can write the joint density function of x and s,
given A and 7, as

p(x,5|7,4) = p, (xls, T)p(s|]A)
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where we assume that the probability of occurrence of s is
independent of 7. For a given observation sequence, (2)
gives the joint likelihood of the observation and state se-
quences given the dependence structure associated with the
model parameters. This likelihood is used for maximiza-
tion in training for estimation of the parameter set and in
recognition for use as a score of the given observation
sequence.

Model 2. For the second model, the density function of
X, given the state sequence s, is defined as
T
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where the observation density of the frame vector x, from
state s;, b, (x,), is expressed as a weighted sum of the
conditional densities of x, given N individual previous
frames; N is a predefined constant, W, is the weight to
the frame x,_. on which x, is dependent in state s,, and
f (-|-) is the component conditional density function
constituting b, (x,).

Unlike model 1, the dependence structure among
the frames is characterized here by the weight sequence
{w%: t=1, .-, T} associated with each time-lag
sequence (7, ---, Tr), where 1< 7, < N. We therefore
call this model the dependence-weighted model. A similar
weighted-sum representation principle was applied
previously to a language-model with N -gram constraints
[9]. Note that (3) is reduced to (1) if we assume that at
each time ¢ only one weight, Wi zr)» €Xists while the
others are zero.
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From (3) we can write the density function of x
given A as

p(A)Y =Y pi (As)p(s|A)
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where the summation for s is taken over all possible state
sequences. Given an observation sequence, (4) gives the
likelihood of the observation associated with the model
parameter set. This likelihood is then maximized for model
estimation and for recognition.

In both the models, the observation densities, i.e.,
the b;’sin (1) and the f;.’s in (3), are defined as the mul-
tivariate Gaussian conditional density function of the form
g(x|x')=N(z, my, V,)/N(x, m,, V,.), where N() de-
notes a normal function, z=(x, x') is the joint vector of
x and x',and m’s and V’s are the mean vectors and co-
variance matrices correspondingly, which are either state
(for model 1) or state and time-lag (for model 2) depen-
dent. Two kinds of covariance structure are considered for
this density. For the first case, it is assumed that x and x'
have diagonal covariance matrices and are uncorrelated
except for their corresponding elements (i.e. spectral com-
ponents). This results in a joint covariance matrix V, in
which each of the block covariance matrices has a diagonal
form. For convenience therefore, we call this density the
diagonal-block covariance matrix density. For the second
case, full covariance matrices for x. x' and z are
assumed.

Further, a mixture density, taking the density
g(x]x') defined above as the components, is imple-
mented. This mixture density has a form
b;(x|x') = X, c4 8z (x|x') and is applied particularly to the
dependence-optimized model as defined by (1).

3. ALGORITHMS FOR MODEL ESTIMATION

Model I. Given a training sequence x, the parameter set
A of the dependence-optimized model is estimated by
maximizing the log likelihood max, ,log p(x,st,1),
where p(x,s|t,A) is given by (2). This maximization,
obviously, includes the conventional bigram-constrained
HMM’s as a special case and is accomplished by using the
segmental K -means procedure. The algorithm involves an
iteration of alternate maximization of log p(x,sl‘r,l),
once over s and 7 foragiven A4, and then over A for the
resulting estimates of s and 7, § and 7. In particular, in



the estimation of A, the optimization over b, is equivalent
to estimation of its parameter set given the data set
{z,} = {x;, xz(y : 5, =i}y, - An efficient solution to the
simultaneous maximization of s and 7 given A is
implemented using a joint state-sequence decoding and
dependence searching algorithm. More specifically, define
8,(i) as the log likelihood of the best state and time-lag
sequences ending in state i and for the observations
{Xn}n=1, ;» then by induction we have the recursion formula

0,(j)= Jnax [8,-1()) +logay]

+ max logbj(x,|x,(,)) 1<j<M (5)

()

The arguments { and 7(z) which maximize (5) for each ¢
and j are stored to retrieve the best state and time-lag
sequences for the complete observation. The solution at the
end of an observation, time T, is given by max; 6;(i),
which is used as the score of that observation in
recognition. (5) is similar to the conventional Viterbi
algorithm, except for the extra search for the 7(¢)’s. The
complexity of the search is proportional to the range of the
dependence being searched.

Model 2. For the dependence-weighted model, the
likelihood function defined by (4) is maximized for
estimation of the parameter set that includes z, A, {f,.}
and {w;;} for 1<i<M and 1< 7< N. This maximization
is implemented using the forward-backward recursion
algorithm which iteratively maximizes the likelihood with
respect to a new estimate A given the previous estimate
A . The main reason for taking the forward-backward
recursion instead of the Viterbi algorithm is to prevent the
dependence weights, i.e. W,.'s, from taking only two
values: one or zero. Define the forward probabilities

M
(D= a,_ (Hab(x) 1<i<M, 1<I<T  (6)
j=1

with @, (i) = «;, where b;(x,) is defined in (3), and the -

backward probabilities
M
B.()= Zﬂ,ﬂ(j)a,-jbj(xm) 1<isM, T-12120 (7)
j=1

with B7(i) =1, we have
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where Z, =z,-m, ., z,=(x,,x,_,) is the joint vector
with time lag 7 and f,(x,.x,_.) is the density of this
joint vector. m, ;. and V, . contain the mean vector and
covariance matrix of the component vector x,_, that are

required for the computation of the conditional density.
4. EXPERIMENTS

Speaker-dependent recognition experiments are performed
based on a database consisting of the E-set (b, c, d, €, g, p,
t, v, z) collected from 4 (two male and two female) speak-
ers. The systems we chose for comparison are a standard
continuous HMM based recognizer (HTK) [10] and the
bigram-constrained HMM ([3], continuous version) in
which the dependence of each frame is fixed to the imme-
diate previous frame. All the systems assume a left-to-right
Markov chain with 5 states. For the dependence-optimized
and -weighted models, the searching and weighting ranges
for the dependence are set to be six frames. The speech is
sampled at 10 kHz and each frame has a span of 25.6 ms
with an overlap of 10.6 ms. The 10th-order LPC cepstral
coefficients together with 10 delta cepstral coefficients and
a delta power are calculated for each frame as the feature
vector. 20 utterances of each word are used to train a
model for each speaker, and another 30 utterances of each
word / speaker are used for testing. The recognition results
are shown in Table 1. In all cases, except where otherwise
indicated, the covariance matrices used are diagonal or
diagonal-block forms. The digits in parentheses in the
mixture cases are the numbers of mixtures which were
found to be the best from a maximum of 5 mixtures per
state.

As shown in table 1, both the dependence-
optimized and the dependence-weighted models improve
the performance in comparison to the standard HMM. The



Table 1. Recognition Results of the Systems for 4-Speaker’s E-sct

Model Dependence-Optimized |Dependence-Weighted Standard HMM Bigram HMM
Speaker Single Mixture Full cov Single Single Mixture Full cov Single

A 83.70 90.00 3) 80.37 85.93 79.63 86.66 (4) 78.14 79.25

I 9389 9741(2) 9037 94.81 89.62 93.70(3) 8740 91.48

L 9185 94.81(2) 8259 94.44 84.07 89.25(3) 81.11 86.29

P 8593 9259(22) 79.62 87.40 80.74 88.14(4) 78.14 81.85
Average 88.84 93.70 83.23 90.65 83.51 8943 81.19 84.71

improvement is more significant for the diagonal covari-
ance cases but less significant for the full covariance cases
due to the increased number of parameters. Also, both the
models outperform the bigram-constrained HMM.
Particularly, the histogram of the maximum likelihood
time-lags (i.e. 7(f)’s) in the dependence-optimized model,
which is accumulated over all the utterances being
correctly recognized in the single mixture case, is shown in
Fig. 1. As expected, the dependence-weighted model
performs better than the single-Gaussian dependence-
optimized model because of the use of more information.
We didn’t try multiple mixtures for the static spectral
representation in the model because of the parameter size.
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Fig. 1 Histogram of the maximum likelihood time lag in
the dependence-optimized model

5. CONCLUSION

In this paper we studied the problem of improving the
HMM'’s ability in capturing the temporal correlations in
acoustic sequences. Unlike the conventional approaches,
we proposed a model in which a joint optimization is per-
formed over both the temporal structure and the model
parameters. We particularly investigated two kinds of
observation structures built upon the first-order dependent
densities and presented the algorithms that implement the
joint optimization for the model estimation. The

experimental results show clearly the advantage of this
optimization over some conventional approaches.
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