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ABSTRACT

In this paper, we propose a hierarchically structured Analy-
sis of Variance (ANOVA) method to analyze, in a quantita-
tive manner, the contributions of various identifiable factors
to the overall acoustic variability exhibited in fluent speech
data of TIMIT processed in the form of Mel-Frequency Cep-
stral Coefficients. The results of the analysis show that the
greatest acoustic variability in TIMIT data is explained by
the difference among distinct phonetic labels in TIMIT, fol-
lowed by the phonetic context difference given a fixed pho-
netic label. The variability among sequential sub-segments
within each TIMIT-defined phonetic segment is found to
be significantly greater than the gender, dialect region, and
speaker factors.

1. INTRODUCTION

It has been known from many years of speech research,
both theoretical and empirical, that speech variability at
the acoustic level is overwhelming. In fact, such variability
constitutes the major obstacle to the construction of ma-
chines for high-performance speech recognition even with
the state-of-the-art technology.

In addition to the demonstrations of the overwhelming
amount of speech variability, the various factors that con-
tribute to such variability have also been identified and
studied by speech scientists and engineers. However, the
quantitative aspects of these factors have been conspicu-
ously lacking in the literature, and, to our best knowledge,
all previous studies on speech variability have been lim-
ited either to small subsets of speech data or to only the
qualitative aspect of the study in a descriptive fashion. Al-
though the acoustic-phonetic speech database TIMIT has
been around for sometime and is ideally suited to the study
of the quantitative aspect of the variability for all classes of
speech sounds, no such a study has been undertaken in the
past.

The purpose of this paper is to report the results of our
recently conducted comprehensive study on the acoustic
variability of fluent speech and on the related factors us-
ing TIMIT. In addition to the conclusions from this study
and their implications for automatic speech recognition sys-
tem design, one key contribution of our study is a novel
hierarchically structured Analysis of Variance (ANOVA)
method developed from this study that enables the con-
ventional ANOVA analysis to be conducted in an efficient
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and meaningful way. Using the hierarchically structured
ANOVA method, we have been successful in decomposing
the global acoustic variability in fluent speech according to
hierarchically organized, phonetically and speaker related
factors defined in the TIMIT database.

HIERARCHICALLY STRUCTURED
ANALYSIS OF VARIANCE METHOD

Analysis of Variance (ANOVA) ([7]) is an effective statisti-
cal method in analyzing quantitative responses from exper-
imental units. The main idea of ANOVA is to decompose
the overall variation among the observations into various
components corresponding to the factors involved in the
experiments. The purpose of such an analysis is to assess
the relative significance of the various factors in affecting
the response. There are many different types of ANOVA
models depending on the structure of the experimental fac-
tors. The model with two nested factors is illustrated here
as the building block of our proposed method. Consider the
following model with two factors A and B,

2.

"’J(i);

where Y;; is the observed response at ith level of factor A
and jth level of factor B and €;; ~ N(0,0?) is the corre-
sponding experimental error. The parameter u; represents
the effect of ith level of factor A and pjj; represents the
effect of jth level of factor B given that factor A is at level
i. For instance, we can consider gender of the speakers as
factor A and individual speakers as factor B which is nested
with the levels of factor A. The total variation in the ob-
served responses can be decomposed into two sum-of-square
terms corresponding to the two factors:

Yij=p+pi+uji+e; i=1,---

1 J(i)
SSiotal = ZZ(KJ —}—’.A)2
i=1l j=1
I J(9) 1
= 3 S (V=B +) JEOE -
i=1 j=1 =1
= SSa+S55B

The ratio between SSa4 and SSp indicates the relative sig-
nificance of the two factors in affecting the response.

For studying the various aspects of the acoustic variabil-
ities in fluent speech, ANOVA is a very suitable method.
The experiment for our analysis is undertaken using

0-7803-2431-5/95 $4.00 © 1995 IEEE



Figure 1. Factors at phonetic level
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the carefully designed acoustic-phonetic speech database
TIMIT. TIMIT is ideally suited for such an experiment
since it involves balanced selection of a full range of vari-
ability factors including phonetic contexts, dialect regions
of the speakers, gender of the speakers, etc.

The factors representing various aspects of the variability
in fluent speech can be organized in the hierarchical struc-
tures as illustrated in Fig. 1-4.

In Fig. 1, the variation in the root node represents the
overall variation in the observations. It can be decom-
posed into within-class variation and between-class varia-
tion. Within each phonetic broad class, the variation can
be further decomposed into within-phoneme and between-
phoneme variations. Similarly, the variation within each
phoneme can be decomposed into within- and between-
phonetic-context variations. In Fig. 2 and 3, we give two
possible arrangements for the factors of gender, dialect re-
gion, and speaker, since there is no strict nesting relation
between the factors of gender and dialect region. Finally,
the model structure shown in Fig. 4 is used to study speech
variability at three levels with the following descending or-
der: token level, sub-segment level, and frame level. A to-
ken is a sequence of observations that correspond to a spe-
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Figure 4. Factors at frame level
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cific speech units such as a phoneme. A sub-segment is a
portion of a token; temporal variation of sub-segments that
constitute a token shows dynamic properties of the speech
signal. A frame is one single observation (vector), typically
covering 10 ms of the speech signal, obtained from a signal
preprocessor. For simplicity in our analysis, we artificially
divide each token into three uniformly spaced sub-segments:
initial, middle, and final sub-segments.

The tree structures in Fig. 1-4 can be combined to form
richer models for the ANOVA analysis. On the other hand,
the layers in these tree structures can also be omitted to
reduce the size of the analysis models.

AN EFFICIENT ALGORITHM FOR
HIERARCHICAL ANOVA USING
SEQUENTIAL DATA

In principle, the ANOVA can be obtained by a regression
analysis with proper coding of the factor levels using or-
thogonal contrasts ([7, 1]). However, when the number of
factors and number of levels of the factors become large,
it is computationally prohibitive to carry out the ANOVA
in the traditional way. In this paper, we propose a new
approach to the computation of ANOVA without requiring
large amount of computer memory. By taking advantage of
the nested hierarchical structure of the ANOVA model, we
can isolate different sources of variations and devise an effi-
cient updating procedure for computing the sum-of-square
terms corresponding to the layers in the tree structure.

For each incoming observation, a path in the tree struc-
ture is identified or a new path is created if the factor levels
corresponding to the observation have never occurred be-
fore. The observation vector is accumulated into each node
on the path and the counter of number of observations of
that node is incremented. When all the observations are up-
dated, the sum-of-square terms of each node can be updated
by the statistics of all the child node in a recursive fashion.
In fact, since TIMIT database is organized by speakers, we
can update the sum-of-square statistics corresponding to
all the layers below the “speaker” factor when the speech
data of one speaker has been completely acquired. Then,
all the branches below the current “speaker” node can be
safely pruned. Therefore, at any time, there is only one
active sub-tree structure below the “speaker” level. This
implies that the amount of computer memory required for
the computation of the entire database is almost equivalent
to that for one speaker. This algorithm is very effective for
ANOVA analysis of large data sets where the conventional
method would fail.
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Table 1. Contribution of individual factors

Cl [17.6% Cl T17.6%
Ph | 16.5% Ph 16.5%
Ct | 27.9% Ct | 27.9%
Dr 9.2% G 4.2%
G 1.6% Dr | 6.6%
Sp | 0.8% Sp | 0.8%
Tk 0.6% Tk 0.6%
Sg | 16.5% Sg | 16.5%
Fr 9.4% Fr 9.4%

4. RESULTS AND CONCLUSIONS

In this section, we present the major results and conclusions
obtained from this study. The results are expressed in terms
of the percentage of contribution of each factor to the overall
variation. The raw sum-of-square statistics in the ANOVA
are not presented since they are not so important to the
objective of this study. The ANOVA are computed based
on the observation vectors of the Mel-Frequency Cepstrum
Coefficients (MFCC) C1-C-. All the MFCC vectors are
mean centered and standardized.

To simplify the presentation of the tables, we adopt the

following abbreviation for the factors:
Cl = phoneme broad class
Ph = phoneme unit
Ct = phoneme-in-context
G = gender of the speaker
Dr = dialect region of the speaker
Sp = speaker
Tk = ‘token of one speech unit
Sg = sub-segment with a token
Fr = f{rame with each sub-segment of the token

4.1. Contribution of the individual factors

The most important objective of this study is to assess the
effect of various factors in contributing to the overall varia-
tion in speech signals. In Table 1, we present the ANOVA
results based on two slightly different model structures. The
difference between the two models (the factors in bold face)
is the nesting order between the factors “gender” and “di-
alect region”.
From this table, we can draw the following conclusions:

1. About (17.6%+16.5%) = 34.1% of the total variation
is explained by the differences among the phoneme
units. This implies that modeling speech signals at
the phoneme level will lose a considerable amount of
information.

Among the remaining part of the variation, 27.9% can
be further explained by the variation among phonemes
in different phonetic contexts. This indicates great po-
tential in modeling context dependent speech units for
improvement of speech recognition systems. This con-
clusion is consistent with many research works in con-
text dependent speech modeling ([6, 5, 3]).

Below the phonetic level, (9.2%-+1.6%+0.8%) = 11.6%
out of the remaining 38% is explained by the varia-
tion among the speaker. This result shows that al-
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Table 2. Effect of context-dependent speech units

M1 M2 M3 M4

Unit | 34.1% | 37.2% | 49.2% | 74.4%
G| 30% | 33% | 58% | 53%
Dr | 8.6% | 10.3% | 14.9% | 8.7%
Sp| 71% | 8.5% | 6.3% | 1.2%
Tk | 21.4% | 31.3% | 14.5% | 1.0%
Sg | 16.5% | 6.6% | 6.6% | 6.6%
Fr| 94% | 2.8% | 2.8% | 2.8%

though modeling speaker variation for speaker indepen-
dent speech recognition is usually regarded as a difficult
problem, it is less severe than the variation caused by
the context dependency of the phonetic units.

. Finally, there is a surprisingly large variation among
different sub-segments within each token. About 16.5%
out of the remaining 26.5% variation is due to the
sug-segment effects. This suggests that speech signals
within a phonetic segment is far from stationary and
more research on modeling the dynamic patterns of
speech will help to improve the performance of exist-
ing speech recognition systems [4, 2].)

4.2. Effect of context-dependent speech units

As we can see from the results in the previous section, pho-
netic context variation is a major difficulty in speech mod-
eling. In this section, we use the ANOVA method to assess
the capability of various context-dependent speech units in
explaining the total variation in speech.

We consider the following four models: two context inde-
pendent and two context dependent models.

M1: phonemes as the basic speech units (61 in total);

M2: three sub-segments within a phoneme segment as the
basic speech units (183 in total);

Ma3: three sub-segments within a TIMIT phone segment
modeled by a pair of left- and right-diphones and a
center phone units (3149 in total);

M4: three sub-segments of a triphone unit as the basic
speech units {15971 in total).

From Table 2, we observe that the speech units in “M1”
have a rather low contribution to the overall variation
(34.1%). “M2” does not improve this contribution much
(from 34.1% only to 37.2%). The context dependent model
based on diphone units “M3” takes a significant leap from
the context independent model. The variation explained by
the diphone units goes from 37.2% to 49.2%. As a step fur-
ther, the context dependent model based on triphone units
“M4” improves even more significantly over the model based
on diphone units. The variation explained by the triphone
units goes up to 74.4%.

Although “M4” shows the greatest contribution to the
overall variation in the fluent speech, the number of speech
units is too large (around 16,000 in this example) to be reli-
ably estimated from any moderate amount of training data.
Our result suggests that better modeling of context depen-
dent behaviors in speech using more parsimonious models



Table 3. ANOVA for individual phonemes

Ph Ct Sp Tk Sg Fr
aa | 48.1% | 19.6% | 0.2% [ 20.2% | 11.8%
ae | 52.6% | 15.9% | 0.1% | 19.2% | 12.2%
ah | 46.8% | 23.3% | 1.3% | 19.2% | 9.4%
ao | 51.8% | 12.9% | 0.5% | 22.5% | 12.3%
b | 30.0% | 29.4% | 4.0% | 28.8% | 7.9%
d|304% | 33.6% | 4.3% | 24.7% | 7.0%
em | 48.7% | T.7% | 0.0% | 27.2% | 16.4%
en | 49.8% + 8.5% | 0.0% | 25.6% | 16.1%

should benefit greatly the design of speech recognition sys-
tems.

4.3. ANOVA for individual phonemes

We have also performed ANOVA for each individual
phoneme in terms of context, speaker, token, and segment
variations. Due to space limitation, we can only present
the results for a fraction of the phonemes in Table 3. The
general conclusion from this analysis is that the contextual
variation within each individual phoneme dominates all the
TIMIT-defined factors we put into our analysis.

DISCUSSIONS

It is well known that there are large acoustic variations in
spoken language, where one most significant contribution
to the variation of speech is the intrinsic difference among
distinct underlying linguistic units. This distinction, inter-
mixed with the acoustic variations resulting from different
linguistic units, carries linguistically meaningful informa-
tion for human speech communication.

However, other non-linguistic factors that also contribute
significantly to the global speech variability. First, since
fluent speech is not a simple concatenation of phonetic
symbols, it’s inevitable that phonetic units defined at the
phoneme level be easily influenced by adjacent units. Sec-
ond, even for the same phonetic symbol in the same pho-
netic context, the acoustic signals are generally heavily in-
fluenced by a number of speaker-related factors (gender, di-
alect region, individual vocal tract differences, and speaking
style, etc.). These factors also carry certain amount of in-
formation (which is useful for speaker identification), but
for the objective of speech understanding, these variations
will harm the performance of speech recognition systems.

To improve the performance of speech recogrition sys-
tems, there have been numerous efforts devoted to reducing
and separating the undesirable variations in natural speech.
Although the importance of quantitative understanding of
the numerous sources of these variations has been well rec-
ognized, any systematic study of this kind requires sophisti-
cated statistical skills. Although the conventional ANOVA
analysis appears appealing to achieve our goal of quanti-
tative analysis, the complexity of the variation factors and
the large amount of speech data in TIMIT do not permit
a straightforward adoption of the conventional technique.
As one main contribution of this study, we have developed
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a simple-to-implement recursive algorithm, as described in
Section 3, that updates the various variation components
in ANOVA in a sequential and adaptive manner. This al-
gorithm has not appeared in the statistical literature and is
essential for us to obtain the quantitative results described
in Section 4.

The current study, together with the preliminary conclu-
sions reached in Section 4, has been limited in several ways.
First and foremost, our entire analysis has been based on
the assumption that the acoustic data of speech are repre-
sented by the mel-frequency cepstral coefficients. Second,
the speaking style in TIMIT data is relatively uniform from
one speaker to another and from one sentence to another,
and is far from that of natural conversational speech. Third,
the syntactic and semantic structures of the TIMIT sen-
tences are far from those of natural conversational speech.
Despite of these limitations, our results nevertheless serve
to provide useful insights to the understanding of the roles
of various components of speech recognizers in contribut-
ing to the ultimate speech recognition performance. For
instance, the surprisingly large amount of variation, found
in our ANOVA analysis, across sequentially ordered sub-
segments of speech within a segment of the TIMIT-defined
phonetic label is indicative of the significant role of dynamic
modeling in speech recognizer design. (Such a role has been
empirically demonstrated in our earlier study [2].)
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