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ABSTRACT

This paper describes a language model it which context-
free grammar rules are integrated into an n-gram
framework, complementing it instead of attempting to
replace it. This releases the grammar from the aim of
parsing sentences overall (which is often undesirable as
well as unrealistic), enabling it to be employed selectively
in modelling phrases that are identifiable within a flow of
speech. Algorithms for model training, and for sentence
scoring and interpretation are described. All are based on
the principle of summing over paths that span the
sentence, but implementation is node-based for efficiency.
Perplexity results for this system (using a hierarchy of
grammars from empty to full-coverage) are compared
with those for n-gram models, and the system is used for
re-scoring N-best sentence lists for a speaker-independent
recogniser.

1. INTRODUCTION

Context-free grammars and n-grams are often regarded as
alternative kinds of language model, but they have
qualities that can complement each other. This paper
describes an integrated model, first in a training
procedure for symbol bigram and grammar-rule
probabilities, and then in scoring and interpretation
procedures. By placing the emphasis upon phrasal
syntactic structure, and removing the requirement that a
sentence parse overall, the aim is to enable the grammar
to enhance the recognition of meaningful phrases within

sentences that may be ill-formed.

In previous work [1] we have reported results for a hybrid
recognition system in which grammar and bigram models
operate in parallel. Sentences are implicitly partitioned
into two classes, with consequent problems for interpret-
ing and comparing scores across classes. We have also
experimented with “extended” bigrams and ftrigrams
[2,3], which emphasise the importance of structures wider
in scope than conventional trigrams. Other researchers
have reached similar conclusions [e.g. 4,5], and previous
work combining n-gram and CFG models [6,7] has
proved the significance of this aim.

In general, the chart ot syntactic structures detected within
a sentence will involve subtree sharing and local
ambiguity packing, figure 1. A score for such a structure
could be inherited from that of a top-level path that spans
the sentence, connecting syntactic nodes. If bigrams are
extended to cover nonterminal (as well as terminal or pre-
terminal) symbols, the score is essentially given by

[1 P(symbol I previous symbol)P(derivation from symbol)

Three problems with this are the following:

¢ the top-level path may not be unique (there are two
such paths shown as dashed lines in figure 1),

o the score is remote from the words,

o the score is very sensitive to changes to the grammar.

Conceptually however, spanning paths can be traced
through all levels of the structure, a score

Figure 1: Subtree paths.

assigned to each by the same principle,
and the sentence score inferred as the
total over all paths. The dotted lines in
figure 1 show the additional bigram links
needed. This alleviates the three
problems mentioned, in that the total
score is unique (and the language model
is normalised), it includes scores from
paths that are close to the words, and
many of the paths remain substantially
unchanged through changes to the
grammar.

In practice there can be billions of paths
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through a long sentence, so node-based procedures must
be used for training, scoring and interpretation.

2. TRAINING PROCEDURE

We assume that there is a given set of grammar rules
established in advance, the grammar can consist of a
disjoint set of subgrammars. Each sentence in the training
corpus is parsed (as far as possible): we use a generalized
LR algorithm for this purpose. Then a two-pass algorithm
finds the number of spanning paths that pass through
each node and along each bigram link; full details are
given in [8]. By accumulating over the corpus the
proportion for each sentence of total paths that use each
grammar rule (taking account of local ambiguity) and
bigram, elements of the model are credited in proportion
to their usage in modelling the training data. A special
procedure handles null rules. Grammar-rule and symbol
bigram probabilities are then found by normalising and
smoothing We are currently experimenting with
different smoothing procedures.

A single pass over the training corpus is sufficient for this
procedure, although a probability re-estimation version
could be devised.

3. SENTENCE SCORING PROCEDURE

Let span(X)=(j k) denote the part of the sentence
spanned by node X, where 1<j<k<L for sentence

length L. Let $ denote an end-of-sentence marker, so the
actual sentence string is $wjw,---w;$. The following

(similar to the HMM forward algorithm) finds the overall
score.

(1) For each node Y such that span(Y)=(1,m) for some m,
oY, m)= P(Y|$) P(Y 2wy - w,,)

(2) For all k from 2 to L, and for each node Y such that
span(Y) = (j, k) for some j>1,if Xj,---, X, areall the

nodes such that span(X;)={(m;, j—15 for some

subtree(s) dominated by X, and are inferred from the
output of the substring parser. If X is a terminal node
then this probability can be set to 1 (for perplexity
calculations) or to the word acoustic likelihood (for

recognition). P(Y| X) is the bigram probability.

4. SENTENCE INTERPRETATION

We can now reconsider the top-level paths (the dashed
lines in figure 1). Each provides an interpretation of the
sentence as a sequence of phrases. We define a “trail” as a
path for which no substring is reducible to a higher-level
node, and in general a sentence can have many trails. To
be consistent with sentence scoring, we assign a trail score
as the sum of scores for paths bounded above by the trail.

The procedure for this is more complex than that for the
sentence score. There are two conditions to satisfy: first, a
trail must not pass through all the daughter nodes of any
other node, and second, trail scoring must skip nodes not
dominated by the trail nodes. Both of these conditions
can be handled by appropriate book-keeping. As the trail
highlighted in bold in figure 2 demonstrates, it is possible
for all the nodes along a trail to be reduced, which can
make a trail difficult to find efficiently, but the latest
version of this procedure finds and scores the trails with
only a modest additional overhead. We have space here
for only a sketch of the procedure.

Define a node as “L-reduced”, “M-reduced” or “R-
reduced” if it is reduced as (respectively) a left-most,
intermediate, or right-most subtree to a higher structure.
With each reduce action we associate a unique identifying
number, and for each node Y we construct lists
Ly, My, Ry of reduction identifiers for which Y is L-, M-,
and R-reduced respectively. A node X is “marked” if it is
either unreduced, or shared, or adjacent to another
marked node Y (with span(Y)=(j,k)) in that either

e span(X)=(m,j-1) for some mand X is not R-reduced,
o span(X)=(k +1,m) for some m and Xis not L-reduced.

m; then
a(Y,k):I:Za(X,»,j—l)P(YIX,-):l P(Y-_5>wl~--wk)
i=1
I XX, are all the nodes such that

span(X;)=(m;,L) for some m; then

PSwywy—w,$)= X, L) P§| X,)
i=1

Derivation probabilities of the form P(X =1x)
include the sum over all local ambiguities within the

Figure 2: Top-level trails.
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Language model Number of rules ~ Number of nonterminals  Test corpus perplexity ~ Trigram corpus perplexity
Unigram - - 116.5 103.9
Bigram - - 17.1 13.4
Trigram - - 129 9.1
Extended bigram - - 12.3 19.0
Extended trigram - - 8.9 18.3
Grammar, full 228 288 12.2 21.7
Grammar, interl 181 267 12.8 220
Grammar, inter2 174 260 12.8 22.0
Grammar, inter3 72 205 12.5 21.0
Grammar, empty 0 1 34.6 21.5
Table 1: ARM corpus perplexities

Adjacent marking is propagated using a simple two-pass
algorithm, and trails pass only through marked nodes.

For each trail t we maintain a set S, of identifiers. When

the trail meets a marked node Y, we add all new reduction
identifiers for which Y is L-reduced, and delete all earlier
identifiers for which Y is not M-reduced, by updating 5,

to (S,AMy)uLy. If a reduction identifier is present in

the set when the right-most node is reached then the trail
must have traversed all the daughter nodes and is
discontinued. This is indicated by S, "Ry # & .

With each node we also associate a list of identifiers for
the top-most reductions that dominate it. Using this it is
easy to check whether or not a node is within the same
subtree as a trail node. The trail score is the sum of scores
for all paths through nodes dominated by the trail nodes,
and is found by an approach similar to that for the
sentence score. To save time, node marking, trail control
and scoring all occur within a single procedure.

Because each trail consists of a unique sequence of nodes
it would be possible to apply either higher-order n-grams
or extended n-grams {2,3] to score this sequence. This
may improve the capability of the system to find the best
interpretation and is the subject of current work.

5. RESULTS

Results have been obtained using a corpus of Airborne
Reconnaissance Mission (ARM) reports [9]. These have a
vocabulary of 511 words, and each report consists of a
series of sentences of standard types. There is a full

grammar for these reports, which we have adapted into
context-free form. This allows us to study the effect of
using a hierarchy of grammars, from empty to full
coverage. Previous work using this corpus [2,3] has
shown that significant reductions in test corpus perplexity
are achieved using extended bigrams and trigrams,
compared with their conventional counterparts.

5.1 Corpus perplexity

Table 1 contains perplexity figures for a test corpus of
ARM sentences, scored using a hierarchy of n-gram
models from basic unigram to extended bigram and
trigram. The value 12.2 obtained using the full-coverage
grammar compares well with the results obtained using n-
grams. The low perplexity persists when rules are
progressively removed from the grammar, (the model is
re-trained for each grammar). The empty grammar
essentially acts as a bigram model, but with different
smoothing than for the word bigram model, which
accounts for the higher perplexity. The figures in the
bottom half of the table are dependent on the smoothing
procedure, and there is also some pruning of paths in the
current implementation.

Test corpus perplexity is higher than that for the extended
trigram model, even with the full grammar. This is partly
attributable to the fact that paths that are close to the
words, and therefore involve a lot of bigrams, make a
major contribution to the sentence score. This is not
necessarily a disadvantage, and it would be easy to give
greater weight to higher-level paths if desired.

For comparison, corresponding figures are shown for a
corpus generated at random using the smoothed trigram

175



model, and as expected these are higher.

5.2 Re-scoring of N-best lists

N-best lists are inferred from the word lattices generated
by the speaker-independent continuous ARM recogniser
(from acoustic scores with no initial language model).
Each is a report consisting of several consecutive
sentences, with a total length of around 50 words. For this
reason, the true report is often not in the N-best list, even
for N=100. We therefore score each candidate report
and correlate the negative log score with the minimum
distance (number of insertions, deletions and

substitutions) of the candidate from the true report, which :

may be up to 26.

Linear Rank
Graminar, full 0.713 0.696
Grammar, inter2 0.693 0.676
Grammar, empty 0.670 0.651

Table 2: N-best list correlations

Table 2 contains linear and rank correlations, averaged
over 12 N-best lists, with N =100 in each case. Scores
clearly tend to be higher for candidates that are closer to
the true report, and the correlation improves with the size
of the grammar. The improvement is modest, but this
may be due to the dominance of low-level paths alluded
to previously, and is under investigation.

5.3 Trails

Because of the present formulation of the ARM syntax,
words can have several interpretations through singleton
reductions. This is leading to a proliferation of trails and
is being addressed. The dynamic range of trail scores is
quite large, and whether the highest-scoring trails tend to
pass through high or low nodes is determined by the
grammar structure and the training procedure.

6. CONCLUSIONS

A language model that employs both n-grams and
grammar rules coherently has a number of potential
advantages. It has the robustness of a pure n-gram model,
an improved capacity to spot meaningful phrases where
these extend beyond a local n-gram, and the capacity to
interpret incoming data. Efficient training and operation
is possible using the node-based procedures described in
this paper. Training and scoring (including parsing) for
the ARM corpus require approx. 1sec and 0.1sec CPU
time per sentence respectively, on a top-end UNIX server.
Perplexity and N-best list re-scoring results are turning
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out as expected. In particular, enhancing the grammar
moves the better candidates up the N-best lists.

Some possible refinements to the system include the
development of a re-estimation version of the training
procedure, the weighting of paths by their structural level,
incorporation of extended n-grams for word and trail
paths, full integration of trigrams throughout the
structure, and application to word lattices in preference to
N-best lists. Of wider significance is the issue of
grammatical inference, and it may be of value that this
system enables the performance implications of
incremental changes to a grammar to be measured.
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