LANGUAGE MODELING BY VARIABLE LENGTH SEQUENCES :
THEORETICAL FORMULATION AND EVALUATION OF MULTIGRAMS

Sabine DELIGNE and Frédéric BIMBOT

Télécom Paris / ENST - Dept Signal, CNRS - URA 820, 46 Rue Barrault, 75634 Paris cedex 13, France, European Union.
e-mail : deligne@sig.enst.fr, bimbot@sig.enst.fr

ABSTRACT

The multigram model assumes that langunage can be de-
scribed as the output of a memoryless source that emits
variable-length sequences of words. The estimation of the
model parameters can be formulated as a Maximum Like-
lihood estimation problem from incomplete data. We show
that estimates of the model parameters can be computed
through an iterative Expectation-Maximization algorithm
and we describe a forward-backward procedure for its im-
plementation.

We report the results of a systematical evaluation of multi-
grams for language modeling on the ATIS database. The
objective performance measure is the test set perplexity.
Our results show that multigrams outperform conventional
n-grams for this task.

1. INTRODUCTION

Langunage can be viewed as a stream of words put out by
a source. This source being subject to syntactic and se-
mantic constraints, words are not independent, but the de-
pendencies are of variable length. One can therefore expect
to retrieve, in a corpus of text, typical variable-length se-
quences of words. The multigram model, first presented
in [3], aims at modeling these kinds of dependencies. This
paper presents the theoretical background of the multigram
model (Section 3), as well as the details of its implementa-
tion by means of a forward-backward algorithm (Section 4).
We also report a systematical evaluation of the model for
a task of language modeling, and we compare it with the
n-gram model (Section 5).

2. THE MULTIGRAM MODEL

The n-gram model [1] assumes that the statistical depen-
dencies between words are of fixed length n along the whole
sentence. In the polygram model [2], the probabilities of the
n-grams are estimated by interpolating the relative frequen-
cies of all k-grams, with k < n, which is a way to account
for variable-length dependencies. The n-multigram model
[3] makes a different assumption : under this approach, a
sentence is considered as the concatenation of independent
variable-length sequences of words, and the likelihood of the
sentence is computed as the sum of the individual likelihood
corresponding to each possible segmentation.

169

Let W = w(1)---w(t).-- w(T) denote a string of T words,
and let L denote a possible segmentation of W into ¢ se-
quences of words : s(1)---3(¢). The n-multigram model
computes the joint likelihood £(W, L) of the corpus W as-
sociated to segmentation L as the product of the proba-
bilities of the successive sequences, each of them having a
maximum length of n :

t=q

cw,L)=]] » st (1)

t=1

Denoting as {L} the set of all possible segmentations of W
into sequences of words, the likelihood of W is :

Lugr(W) = Y LW, L) (2)

Le{L}

The decision-oriented version of the model parses W ac-
cording to the most likely segmentation, thus yielding the
approximation :

Ligr(W) = max L(W,L) (3)

For instance, with T = 4, n = 3, W = abcd, and by denot-
ing sequence borders with brackets :

p([a]) p([bed])
p([abc]) p([d])
p([ad]) p([cd])

L3 ugr (abed) = max ¢ p([ab]}) p([c]) p([d])
»([a]) p([bc]) p([d])
2([a]) p([8]) p([cd])
([a]) p([8]) p([c]) »([d])

whereas, more classically :

Ls-gr (abcd) = p(a) p(bla) p(c|ab) p(d]bec)
3. PARAMETER ESTIMATION

In this section, we derive Maximum Likelihood (ML) es-
timates of the multigram model parameters. Let D =
{s1;-++;8m} denote a dictionary that contains all the se-
quences which can be formed by combinations of 1, 2,...
up to n words of the language vocabulary. A n-multigram
model is fully defined by a set of parameters © consisting
of the probability of each word sequence s; € D :

© = (8;)72; where 8 =p(s;) and EG.— =1
=1

0-7803-2431-5/95 $4.00 © 1995 IEEE

An estimation of the set of parameters © from a training
corpus W can be obtained as a Maximum Likelihood (ML)
estimation from incomplete data {4], where the observed
data is the string of words W, and the unknown data is
the segmentation L underlying the string of words. Thus,
iterative ML estimates of © can be computed through an
EM algorithm. Let Q(k,k 4+ 1) be the following auxiliary
function at iteration k41 :

Qkk+1)= Y LLIW:;0M)log L(W. L:0*+V) (4)
Le{L}

where L(W, L; 9(""'1)) is the joint likelihood computed as
in Equation (1) with the parameter estimates at iteration
k+1, and L(L|W;©(*)) is the conditional likelihood of the
segmentation L given W, at iteration k :

L@y = LW, L;©1)
the term £(W;©(*)) being computed according to Equa-

tion (2).

The reestimation formula of the i*® parameter at iteration
(k+1), 05*“) , can be derived directly by maximizing the
auxiliary function Q(k, k + 1) over ©*+1) under the con-
straint that all parameters sum up to one. It yields :

Z:Le{L} c(si, L) x L(L|W; @(k))
ZLG{L} e(L) x L(L{W; ©(%))

where c(s;, L) is the number of occurences of sequence s; in
segmentation L, and c(L) is the total number of sequences
in L. Equation (5) shows that the estimate for 4; is merely
a weighted average of the number of occurences of sequence
s; within each segmentation.

Since each iteration improves the model in the sense of in-
_ creasing the likelihood £(W;©(%)) [4], it eventually con-
verges to a critical point (possibly a local maximum).

A decision-oriented procedure can readily be derived from
the reestimation formula : let L**) be the most likely seg-
mentation of W at iteration k :

L**) = Argmaz L(L|W; ©%))
Le{L}

k
05 +1) _

(5)

By setting :

1 fL=L"
L(LIW; @(k)) = { 0 :)therwise

the reestimation formula reduces to :

(k41) _ C(S.’,L.(k))
oi - c(L‘(")) (6)

The probability of sequence s; is thus simply reestimated
as the relative frequency of the sequence along the best seg-
mentation at iteration k. This procedure parses the corpus
according to a ML criterion and can also be used as an al-
ternative way of training, as is done in [3]. The estimation
of the multigram parameters through Equation (5) will be
refered to as EM training, and the one through Equation (6)
as Viterbi training.

4. FORWARD-BACKWARD ALGORITHM

A forward-backward implementation can be used to avoid
the explicit search for all segmentations, thus reducing the
complexity of the algorithm from O(27) to O(T). This
forward-backward algorithm relies on the definition of two
forward variables, o and ¥, and a backward variable 8. To a
certain extent, a n-multigram model can be thought of as a
n-state Ergodic Hidden Markov Model (EHMM) with state
1 emitting a sequence of length ¢, and all transition probabil-
ities being equal. Therefore, the forward-backward training
algorithm is quite similar to the one used for HMM training.
However, the need for a third variable v arises from the fact
that the number of sequences in a string of words depends
on the segmentation considered for that string, whereas the
number of observations emitted by a classical HMM is con-
stant whatever sequence of states is considered.

Let W((::)) denote the substring of the corpus W between
the words of rank t; and t;. We define a variable a(t) as

the likelihood of the partial corpus VV((I')) :

a(t) = LW)
Since any segmentation of VV((I')) ends with a sequence of

either 1, 2,... or n words, a(t) can be recursively calculated
as indicated in Box 1 :

Boz 1 : Recursion formula for variable
for1<t<T:
a(t) = 350, e =D p([w(t-1+1)---w(®)])

with a(0) =1 and af(t)=0fort <0

In the rest of this section, we will use the notation :
au(t) = a(t—1) p([w(t—1+1)-w(®))

which represents the likelihood of VV((;)) associated to a seg-
mentation, the last sequence of which is of length 1.
Similarily, we define a backward variable 3(t} as the likeli-
hood of the last (T' — t) words of the corpus :

B(t) = L (WD)

and we present its recursive formula in Box 2 :

Bor 2 : Recursion formula for variable
for1<t<T:
B) = 30, p(w(t+1)---w(t+ D)) Bt +1)

with A(T) =1 and B(t)=0fort>T

A third variable ¥(t) is needed, which represents the aver-
age number of sequences in a segmentation of VV((;)). Since

any segmentation ends with a sequence of elther 1, 2,..
n words, and since a segmentation of W,)) ending w1th a
sequence of ! words has an average number of sequences
which is equal to y(t—1)+1:

or

cn(t)

Z (-1 + 1) 5

1) = ™

-‘;L(tt))- can be shown to be the likelihood for a
segmentation to end with a sequence of ! words, given W((l))

Thus, we deduce the recursion formula for v which is given
in Box 3 :

The quantity

Box 3 : Recursion formula for variable v

for1<t<T:
n a(t)
with 4(0) =0 and ¥(t)=0fort< 0

The parameter reestimation formula (5) can be rewritten
as a function of variables a, 8 and v at iteration &, as in
Box 4.

Boz 4 : Parameter Reestimation Formula :

for a sequence s; of ! words,

k 85
P a§)(t) BVt Oty (= 141)--w(t)]
FB(0) 79(T)

0(k+1) =

where

1if fw(t—14+1)---
0 otherwise

5% - w(t)] = si
[w(t=141)---w(t)}

The set of parameters © can be initialized with the relative
frequencies of all co-occurences of words up to length = in
the training corpus. Then O is iteratively reestimated as
in Box 4 until the training set likelihood does not increase
significantly, or with a fixed number of iterations.

5. EVALUATION

In this section, we assess the n-multigram model in the
framework of language modeling, on the ATIS database [5],
for several values of n, and both trairing methods described
in Section 3, i.e the EM training and the Viterbi training.
We compare the multigram model with the conventional
n-gram model. Performances are evaluated in terms of per-
plexity [1] on the test and training sets. The perplexity of
the corpus W of size T words is obtained as :

PP(W) = 27T lo82 £(W)

171

For the n-multigram model, the initialization procedure is
common for the EM and the Viterbi trainings. In both
cases, all co-occurences of 1, 2,... up to n symbols are used
to get initial estimates of the sequence probabilities. How-
ever, to avoid overlearning, we found it efficient to discard
unfrequent co-occurences, i.e those appearing strictly less
than a given number of times co. Then, 10 training itera-
tions are performed either as indicated in Equation (5) (EM
training) or as described in Equation (6) (Viterbi training).
Sequence probabilities falling under a threshold po are set
to 0, except those of length 1 which are assigned a minimum
probability po. After the initialization and each iteration,
probabilities are renormalized so that they add up to 1.
During the test phase, the likelihood of the multigram model
can be computed using either Equation (2) or Equation (3),
yielding two perplexity values respectively noted PP and
PP*. These quantities can be computed either from the
EM estimates or from the Viterbi estimates, which leads al-
together to 4 different scores. Since all sequences of length
1 have a minimum probability of po, the likelihood of any
string of known words can be computed. Unknown words
are considered as a single unknown sequence of length 1
with probability po, which is added to the dictionary before
normalization. The perplexity measure may be biased, de-
pending on the way unknown words are treated. Therefore,
beside the conventional perplexity, we also compute the ad-
justed perplexity, as proposed in [6] by Ueberla.

For the n-gram model, probabilities are estimated as the rel-
ative frequencies of the n-grams in the training corpus. A
Good-Turing smoothing technique is used to assign a non-
zero probability to unseen n-grams made of known words,
according to [7] (quoted in [8]). This step is followed by
a renormalization of all conditional probabilities. To com-
pute the test likelihood, the conditional probability of any
unknown word X is assigned a fixed value po. For instance,
Pi_ 4 (X|abc) = po. When X appears in the left context,
the history is truncated after X, and the probability of the
corresponding n-gram is obtained from the lower order k-
gram. For instance, Py_gr(claXb) = P2—gr(cld).
Experiments are carried out on a filtered version of the ATIS
database. The training corpus contains more than 10 000
sentences, i.e more than 100 000 words from a vocabulary
of about 900 words. City names, month names, day names,
airline names, hours and numbers aré each replaced by a
specific word. The test corpus is another set of 1000 such
sentences, i.e about 10 000 words, with 52 occurences of
unknown words, among which 40 are distinct.

We report perplexity results for n-gram and n-multigram
models, with 1 < n < 7. For n-multigrams, the initial-
ization is done with ¢o = 4, which is globally the optimal
value, but results with co = 3 are not significantly different.
We set the fixed probability po =~ 5 x 10™® which is half
the probability of a word occuring only once in the training
corpus. The Good-Turing occurence number for unseen n-
grams depends on n. For » = 2, it is approximately equal
to 4.5x 10~3, For each value of n, we give the perplexity for
n-grams, two perplexities (PP and PP*) for n-multigrams
trained with the EM algorithm and the same two quantities
for n-multigrams trained with the Viterbi algorithm. Ta-
ble 1 gives the test set perplexities, Table 2 the training set
perplexities and Table 3 the number of units.

[n_ 0 1 [2 [3]

T T 5 T 6 [7]

n_ Il t [2 J 3] 4[5 677}

n-gram model

n-gram model

PP]| 91.5 | 17.4 | 26.6 | 71.3 | 150.3 | 242.2 | 344.4

PP][80.5 [11.0 [56 | 43 | 3.8 | 3.5 | 34

n-multigram model : EM training

n-multigram model : EM training

PP 91.5 | 31.6 | 21.4 | 17.3 | 15.9 15.6 15.4

PP 80.5 | 25.4 | 16.4 | 12.5 | 11.2 | 10.6 | 10.3

PP* || 91.5] 32.5 | 22.0 | 17.7 | 163 15.9 15.7

PP* |l 80.5 | 26.0 | 16.8 { 12.7 | 11.4 | 10.8 | 10.5

n-multigram model : Viterbi training

n-multigram model : Viterbi training

PP 91.5 | 31.9 | 21.8 | 174 | 16.0 15.7 15.4

PP 80.5 | 25.6 | 16.6 | 12.5 | 11.3 { 10.7 | 10.4

PP* || 91.5 | 32.7 | 22.4 | 178 | 164 16.1 15.7

PP* [80.5 | 26.1 | 16.9 | 12.7] 11.4 [10.9 | 10.5

Table 1: Perplezity Values on the Test Corpus

On the test set (Table 1), the optimal n-gram results are
obtained with n = 2. The dictionary of bigrams con-
tains slightly more than 7000 units and a test set perplex-
ity of 17.4 is achieved. An equivalent performance is ob-
tained with 4-multigrams (PP = 17.3 and PP* = 17.7),
with only 3800 sequences having a non-zero probability.
Higher order multigrams provide even lower perplexities :
with 7-multigrams, values of PP = 15.4 and PP* = 15.7
are reached, with about 5000 sequences, i.e less than the
number of bigrams. These results show that n-multigrams
model better the language of our task, with a lower number
of units than conventional n-grams.

The evaluation of the models on the training set (Table 2)
shows that multigrams seem to possess a powerful general-
ization ability.

The comparison of perplexities PP and PP* on both test
and training sets indicates that the single best segmenta-
tion accounts for most of the corpus likelihood. The use of
a Viterbi training instead of an EM training does not have
a large impact on the performances, but the Viterbi proce-
dures leads to about 10 % more sequences.

Finally, the ratio between the adjusted perplexity (not re-
ported in the tables) and the perplexity PP* for n-grams
and n-multigrams is invariably equal to 1.02, which shows
that the differences observed between the models are not
owed to the way unknown words are dealt with.

We give, in Figure 1, an example of the segmentation ob-
tained on the first 4 sentences in the test corpus, with 5-
multigrams trained with the EM method. The segmenta-
tions often show interesting correlations with syntactic and
semantic groups.

| depart from city |

[which airlines] [depart from city]

[find the cheapest one-way fare | [from city to city]

[find] [all] [flights leaving city for city] [which] [depart]
[before hour in the morning]

Figure 1:
Example of a 5-multigram Viterbi Segmentation
First 4 Sentences in the Test Corpus

6. CONCLUSIONS AND PERSPECTIVES

Our experiments show that the multigram approach is a
competitive alternative to the n-gram model in terms of
language modeling. On our task, n-multigrams models with
n > 4 outperform the best n-gram model (bigrams), though
requiring less units.

Table 2: Perplezity Values on the Training Corpus

fn=1]n=2] n=3 [n=4 | n=5 | n=6 | n=7]
n-gram model
931 | 7253 | 16589 | 24121 | 27979 | 28694 | 27125

n-multigram model : EM training
931 | 1753 | 3180 | 3800 | 4315]| 4580 | 4859

n-multigram model : Viterbi training
931 | 2203 | 3610 | 4231 | 4763 | 5081 | 5312

Table 3: Number of Units in the Dictionary

Both models could also be used in a single framework, for in-
stance by estimating n-gram models from the sequences pro-
vided in a non-supervised manner by a multigram approach.
It also seems interesting to investigate the application of the
multigram approach to other issues : for instance, in the
natural language processing field, for the search for seman-
tic equivalences between word sequences in view of concept
tagging, or at the acoustic-phonetic level, for the antomatic
definition of speech synthesis and recognitior units.

7. REFERENCES

[1] F. Jelinek (1990). Self-organized language modeling for
speech recognition, in Readings in Speech Recognition, pp.
450-506. Ed. A. Waibel and K. F. Lee. Morgan Kaufmann
Publishers Inc., San Mateo, California, 1990.

[2] T. Kuhn, H. Niemann, E. G. Schukat-Talamazzini (1994).
Ergodic Hidden Markov Models and Polygrams for language
modeling, Proc. ICASSP 94, vol. 1, pp. 357-360.

[3] F. Bimbot, R. Pieraccini, E. Levin and B. Atal (1994).
Modéles de Séquences 4 Horizon Variable : Multigrams,
Proc. X Xt# JEP, Trégastel (France), June 1994.

[4] A. P. Dempster, N. M. Laird and D. B. Rubin (1977).
Mazimum-Likelihood from Incomplete Data via the EM al
goritkm, J. Roy. Stat. Soc., vol. 39, n° 1, pp. 1-38.

[5] MADCOW (1992). Multi-Data Collection for a Spoken Lan-
guage Corpus, Proc. 5 DARPA Workshop on Speech and
Natural Language, pp. 7-14.

[6] J. Ueberla (1994). Analysing a Simple Language Model -
Some General Conclusions for Language Models for Speech
Recognition, Computer Speech and Language (April 1994),
vol. 8, n® 2, pp. 153-176.

[7] I.J.Good (1953). The population frequencies of species and
the estimation of population parameters, Biometrika, n° 40,
pp. 237-264.

(8] K. W. Church, W. A. Gale (1991). A comparison of the
enhanced Good-Turing and deleted estimation methods for
estimating probabilities of english bigrams, Computer Speech
and Language (January 1991), vol. 5, n° 1, pp. 19-54.

172

