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ABSTRACT

This paper introduces a new methodology to remove the
residual effects of speech from the cepstral mean used for
channel normalization. The approach is based on filtering
the eigenmodes of speech that are more susceptible to con-
volutional distortions caused by transmission channels. The
filtering of Linear Prediction (LP) poles and their corre-
sponding eigenmodes for a speech segment are investigated
when there is a channel mismatch for speaker identification
systems.

An algorithm based on Pole-filtering has been devel-
oped to improve the commonly employed Cepstral Mean
Subtraction. Experiments are presented in speaker identifi-
cation using speech in the TIMIT database and on the San
Diego portion of the KING database. The new technique is
shown to offer improved recognition accuracy under cross
channel scenarios when compared to conventional methods.

1. INTRODUCTION

Channel normalization techniques implemented in the cep-
stral domain have been proposed in the past [1,9,6,11]. They
modify or weight the cepstral coefficients to minimize the
mismatch in the training and test data due to channel dis-
tortions caused by the acquisition of speech via different
microphones, hand-sets or transmission channels. This pa-
per introduces a new technique that offers a more accurate
method of channel normalization.

The all-pole model based on LP analysis is frequently
used in Speech/Speaker recognition [1]. For an all-pole filter
of order p given by,
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with roots zx,k = 1,2,---,p of the model, the roots corre-
spond to the modes of the linear system of speech. These
roots form the dominant modes modeling the speech seg-
ment. Each root z; has associated with it a center fre-
quency, wx = ;7 arctan %Eﬁ%, and a bandwidth, B, =
—Lin(|zs|), in units of x radians. Schroeder [4], expressed
the cepstral coefficients as a root power sum formula,
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where ¢(n) is the n'* cepstral coefficient and &(n) is the n**
liftered cepstral coefficient [2]. The roots generally occur in
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complex conjugate pairs or are real. A filter with p poles,
may consist ¢ pairs of complex poles and remaining p — 2¢
real poles. The impulse response of complex conjugate pole
pair, 2k, z§|, corresponds to a damped sinusoid represented
by,

1
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Each complex conjugate pole pair represents a compo-
nent in the spectral domain (referred to as a spectral com-
ponent) corresponding to a center frequency ws, and band-
width Bi. The relationship between the cepstrum and the
spectral components can be used to investigate the effect
of channel variations. The modification of the components
of speech under known convolutional distortions and their
derived cepstra form the basis of the pole-filtering approach.

The outline of the paper is as follows. In Section 2, chan-
nel normalization in cepstral domain is discussed. Section
3 discusses the effect of all-pole parameters on estimates of
convolutional distortions and the pole filtering methodology
for extracting robust cepstral features. In Section 4, the
results of speaker identification experiments are reported
followed by summary and conclusions in Section 5.

2. CHANNEL NORMALIZATION USING
CEPSTRAL MEAN SUBTRACTION

It is well known that a time-invariant distortion caused
by a recording apparatus or the transmission channel, can
be eliminated by Cepstral Mean Subtraction (CMS). This
method of eliminating the distortion relies on the assump-
tion that the ensemble average of the speech .waveform is
zero. '

CMS has been widely used to equalize the channel mis-
match between training and testing data for both, speech
and speaker recognition systems [1,6,11]. Elimination of
such cepstral bias is also implicit in most standard channel
normalization techniques [6,9].

However, in most practical situations, where the amount
of speech data available is limited for training and for test-
ing, the assumption that the average cepstrum due to speech
is zero-mean does not hold. In general, the long term cep-
stral mean tends to represent the gross spectral distribution
of the speech in addition to an estimate of the time-invariant
distortion. With CMS, an improper estimate of the chan-
nel cepstrum tends to attenuate useful spectral information
from every frame. Hence, although CMS helps normalize
the channel mismatch, it tends to eliminate useful spectral
information which reduces the classification accuracy. The
effect of CMS can be understood by studying the specira
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Figure 1: (a) Original Channels [Wire] (b) Estimated in-
verse filter responses.

of the cepstral mean, also called the channel compensation
filter (CCF) [10].

The spectra of cepstral means of a speech utterance
from the TIMIT database, processed through two simu-
lated telephone channels (Continental Mid Voice (CMYV)
and Continental Poor Voice (CPV)) in figure (1(a)), is shown
in figure (1(b)). One can observe from the frequency re-
sponses of the filters that they have the characteristic re-
sponse of a corresponding inverse (or deconvolution) filter.
The spectral contents of the cepstral mean, cs, for a sen-
tence, S, can be categorized in the cepstral domain as cor-
responding to,

o a spectral roll-off mainly due to the channel, hgs, and,

¢ variations in the spectra which are due to the gross
spectral distribution of speech, ss.

The speech information present in the cepstral mean
is important and should not be eliminated when CMS is
carried out for channel compensation. In order to achieve
proper channel normalization a methodology needs to be
developed that decouples the speech information in the
cepstral mean from the channel information. A more ac-
curate channel normalization would be achieved by de-
emphasizing the component, 8g, to effectively eliminate a
cepstral mean, cs — hs. An reasonably accurate estimate
of the channel cepstrum, cg, could be obtained if the cep-
stral mean solely due to clean speech, sg, with which the
channel were convolved was available, by computing,

lfs ~ Cs — 8s. (4)

However, ss is never available in practice and hence it is
impossible to entirely decouple the cepstral component due
to speech from the cepstral component that corresponds to
the channel.

The residual speech in the cepstral mean also attenuates
the spectral content in some regions of the spectra [10].
Such attenuation would typically occur for all speech frames
from which the cepstral mean is being subtracted. This has
a degrading effect on the accumnlated spectral distortion
over the entire speech utterance when used for classification.
These observations motivate the pole filtering approach to
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channel normalization. The following section outlines the
approach in detail.
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Figure 2: Responses for partial cepstral means for speech
degraded by CMV channel.

3. THE POLE-FILTERING APPROACH

The pole-filtering approach makes use of the effect of indi-
vidual poles from the all-pole model of the vocal tract on
apriori known channel distortions. Since the cepstrum is a
weighted combination of poles or spectral components, the
effect of the individual components on the cepstral mean
can be investigated. By studying this effect, algorithms can
be developed that reduce the speech content in the cepstral
mean and thereby improve the channel estimate.

A simple experiment to study the effect was carried out
by evaluating the partial long-term cepstral means corre-
sponding to the dominance of poles (based on bandwidth)
in every frame of a speech utterance. The contribution to
the long-term cepstral mean due to most the dominant spec-
tral component (pole pair closest to the unit circle) was first
evaluated. Next, the contribution due to the second most
dominant spectral component was found and so on for the
rest of the LP spectral components. The responses were
investigated for each of the partial means for a clean utter-
ance degraded by the CMV channel as shown figure (2).

One can observe from the individual frequency responses
due to the partial cepstral means, that the contribution to
the overall long-term cepstral mean due to the more dom-
inrant poles (or the narrow band poles), is more biased by
the spectral content relating to speech represented by high-
Q regions. In fact, the inverse filter due to the narrow-band
poles exhibits characteristics that would attenuate spectral
information when subtracted in the cepstral domain. The
contribution to the long-term mean by the broad-band poles
however, tends to exhibit smoother inverse filter character-
istics and compensates only for the roll-off in the spectra
due to the channel.

Pole filtering algorithms exploit this observation to im-
prove the channel estimate by modifying the dominant modes
in the speech frame. The strategy is to de-emphasize the ef-
fect of the dominant modes on the cepstral mean estimate.
One technique of improving the estimate of the channel is
to use Pole filtered cepstral coefficients (PFCC). The PFCC
are LP-based cepstral coefficients derived by inflating the
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Figure 3: (a) Pole thresholding process on the unit circle,
{b) Effect of pole filtering on spectra of cepstral mean.

bandwidths of the narrow-band poles while their frequen-
cies are left unchanged. The bandwidth broadening ap-
proach can be carried out by selectively inflating the pole
bandwidths.

In selective bandwidth broadening, the narrow band
poles are shifted inward away from the unit circle along
the same radius, thus keeping the frequency unchanged but
broadening the bandwidths. The procedure is illustrated in
the figure (3(a)). The resulting cepstrum computed after
manipulation of the poles is called pole—filtered cepstrum
and is averaged to calculate a modified cepstral mean.

For each frame:

Evaluate the roots z; of the LP polynomial.

if abs(z:) > a, (a= pole bandwidth threshold),
abs(zi) = a;

Modify zx to #: by,
Zr = alzy;

endif

Evaluate LPCC using 2&.

Evaluate PFCC using 2.

Figure (3(b)) illustrates the effect of pole-filtering on
spectra of cepstral mean. Broadening of bandwidths of the
poles can also be achieved by weighting the prediction coef-
ficients to compute the spectrum. This can be accomplished
using A(vz) =1+ Y 5_, ax(7v2)™* and the corresponding
cepstral transformation cprcc(n) = ¥"cLpcc(n) where v
with a value between 0 and 1, is a bandwidth broaderning

factor [8]. The value of v = e—("%), based on 6 Hz, which
is the frequency with which the pole bandwidths can be
broadened.

The modified long-term cepstral mean, cgf , is subtracted
from the LP cepstrum of every speech frame instead of sub-
tracting the ordinary long-term cepstral mean. The choice
of the broadening factor « or v for selective pole modifica-
tion is justified by empirically observing and choosing the
range of bandwidths of the poles of an all-pole fit to the
impulse responses of the actual simulated channels. It can
be observed that the poles are sufficient more broad-band
compared to the poles of a typical voice speech frame, when
spectrally fitting the bandpass effect of a channel.

The relative error in the cepstral mean estimate with
respect to hg, in equation (4) for ordinary cepstral mean,
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Figure 4: Channel normalization using ordinary mean v/s
pole filtered mean.
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Figure 5: Relative error due to ordinary cepstral mean and
pole-filtered cepstral mean.

Cs, can be formulated as,

Rel.Error(CMS) = H_cs_:h;;.ﬂ’ (5)

[[Beall
whereas, for the pole-filtered cepstral mean c’;f ,

llcE” — heal|
[[Beall

The relative errors have been plotted in Figure (5) for
training utterances for ten speakers from the training set
chosen for the simulated channel experiment. One can ob-
serve that the relative error due to the pole-filtered channel
estimate is smaller than ordinary channel estimate for two
simulated channels, CMV and CPV.

Rel.Error(PFCMS) = (6)

4. EXPERIMENTAL RESULTS

In this section experiments on closed set text-independent
speaker identification have been presented on two stan-
dard speech corpuses, the TIMIT database and the KING
database. Speech in the TIMIT was first downsampled and
passed through a telephone channel simulator [5]. A VQ-
based classifier is used for classification.
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[ Method Training | Testing | Accuracy(%)
LPCC-MR CMV CMV 63.1
PFCC-MR CMV CMV 69.5
LPCC-MR CPV CPV 62.1
PFCC-MR CPV CPV 68.9
LPCC-MR CMV CPV 59.4
PFCC-MR CMV CPV 64.7
LPCC-MR CPV CMV 56.8
PFCC-MR CPV CPV 62.6

Table 1: TIMIT experiments.

Experiments on TIMIT database

The Speaker Identification experiment on TIMIT con-
sists of 38 speakers from the New England Dialect. For
each speaker there are 10 sentences, five of which are con-
catenated and used for training, while the remaining five
are used for testing. The training data is typically 8-10
seconds for every speaker and the testing data varies from
0.7-3 seconds. The downsampled speech is filtered through
the telephone channel simulator [5] by either the CMV or
CPV channels. Two sets of experiments are conducted on
the TIMIT database by training and testing on the same
telephone channel and across telephone channels. The re-
sults have been tabulated in Table 1. Ordinary mean re-
moval has been abbreviated as LPCC-MR and Pole-filtered
cepstral mean removal as PFCC-MR in the tables.

Experiments on KING database

Results have been reported on the San Diego portion of
the KING database. Sessions 1-5 form one group and 6-10
form the second. Experiments within a group are experi-
ments within the great divide, and across the group as ex-
periments across the great divide, which imply considerable
channel mismatch across the groups. A pole-based frame
selection (FS) process [11] is used to eliminate these unde-
sirable frames for experiments across the divide after stan-
dard energy-based silence removal. The results have been
compared to ordinary mean removal in Table 2 and 3. Pole
bandwidth thresholds in all experiments were chosen in the
range, o € [0.85,0.9]. Comparable results are also obtained
by broadening pole bandwidths using weighted predictor
coeflicients.

Method Identification rate | Accuracy(%)
LPCC-MR 383/520 73.6
PFCC-MR 404/520 T

Table 2: KING experiments, within the great divide.

5. CONCLUSION AND FUTURE WORK

A new method for normalizing channel distortions has been
presented. By studying the effect of poles on channel esti-

Method Identification rate | Accuracy(%)
LPCC-MR 314/650 48.2
PFCC-MR 346/650 53.2

FS + PFCC-MR 366/650 56.3

Table 3: KING experiments, across the great divide.

mates, a new algorithm is proposed to improve the channel
normalization using a refined Cepstral Mean Subtraction.
The ceptral mean estimate is improved by introducing the
concept of pole-filtered cepstral coeflicients. The ordinary
long-term mean removal when replaced by long-term mean
of pole-filtered cepstral coefficients, is shown to improve the
performance of speaker identification systems. Future work
will focus on adaptive pole thresholds so as to optimally
decouple the channel information and speech information
from the cepstral mean estimate.
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