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ABSTRACT

This paper proposes a rapid environment adaptation algo-
rithm based on spectrum equalization (REALISE). In prac-
tical speech recognition applications, differences between
training and testing environments often seriously diminish
recognition accuracy. These environmental differences can
be classified into two types: difference in additive noise and
difference in multiplicative noise in the spectral domain.
The proposed method calculates time-alignment between
a testing utterance and the closest reference pattern to it,
and then calculates the noise differences between the two
according to the time-alignment. Then, we adapt all refer-
ence patterns to the testing environment using the differ-
ences. Finally, the testing utterance is recognized using the
adapted reference patterns. In a 250 Japanese word recog-
nition task, in which the training and testing microphones
were of two different types, REALISE improved recognition
accuracy from 87% to 96%.

1. INTRODUCTION

Stochastic approaches, like Hidden Markov Models (HMMs),
to automatic speaker-independent speech recognition have
been widely used in recent years. In order to accommo-
date the naturally occurring wide distribution of individ-
ual speaker-characteristics, they require a huge volume of
training utterances provided by a large number of speakers.
However, it is well known that differences between training
and testing environments seriously diminish recognition ac-
curacy., If a large number of HMMs could be trained on
all possible environments, this problem might be overcome,
but the collection of great volumes of utterances for all pos-
sible environments is not feasible in practical terms.

Several approaches based on speaker adaptation tech-
niques have been proposed for eliminating environmental
differences (for one such example, see [1]) and reported that
they are effective when the adaptation data in the testing
environment is available beforehand. However, testing en-
vironments are not always known beforehand (as in, for
example, speech recognition over telephone lines). Addi-
tionally, even when speeches having the same content are
uttered by the same speaker, the acoustics may vary accord-
ing to the physical and emotional conditions. Therefore, for
practical applications, a new framework, which uses testing
utterances themselves for adaptation, is effective to cope
with such variation.
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The framework needs a new adaptation algorithm which
satisfies three specific requirements: (1) it is effective un-
der unsupervised conditions, (2) it performs effectively even
with a single adaptation utterance, and (3) its computa-
tional cost is low. CDCN [3] satisfies the first and the sec-
ond requirements. However, its high computation costs,
especially relating to its requirement for the iterative cal-
culations, render it impractical in the framework[4].

In this paper we propose a rapid environment adaptation
algorithm based on spectrum equalization (REALISE)[2]. This
algorithm assumes that the environmental differences can
be classified into two types of differences: differences in
additive noise and in multiplicative noise in the spectral
domain. Based on the assumption, this algorithm extracts
the two types of noise differences according to the time-
alignment between a testing utterance and the closest refer-
ence pattern to it. All reference patterns are then adapted
to the testing environment using the differences and the
input is recognized again using the adapted reference pat-
terns. Because the parameters to be estimated are very
few, and because the algorithm utilizes spectral averages
for both the speech portion and the noise portion of utter-
ances in the adaptation process, this approach is expected
to perform well with a single testing utterance and to offer
stability under unsupervised conditions. Moreover, because
its computational cost is Jow, these three features allow test-
ing utterances themselves to be used for adaptation.

This paper is organized as follows: in Section 2, we
describe the new environment adaptation algorithm RE-
ALISE in detail. In Section 3, we report evaluation experi-
ments. In Section 4, we briefly discuss these results.

2. ENVIRONMENT ADAPTATION

2.1. An Environmnetal Model

We assume there are two types of environmental noise sources
which degrade speech recognition performance: additive
noise and multiplicative noise in the spectral domain. Addi-
tive noise is caused by various user environments (e. g. ma-
chinery noises, speech from others, etc.), and multiplicative
noise is caused by filtering processes (e. g microphones,
transmission channels, the vocal tracts of individual speak-
ers, etc.). In this study, we introduce models in which both
an input speech and a reference pattern are distorted by
their own additive noise B and multiplicative noise A. As-
suming that A and B are constant within an utterance, we
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have
V(k) = A,V(k) + B, 1)
W(k) = AuW(k) + By,

where k indicates the frame number, V(k), W(k) , V(k),

and W (k) are the observed spectra for the input and the
reference pattern, and the undistorted spectra for the input
and the reference pattern, respectively. Suffixes v and w
indicate the input and the reference, respectively. Multi-
plicative noises A, and A, are diagonal matrices.

2.2. Rapid Environment Adaptation Algorithm
based on Spectrum Equalization (REALISE)

The goal of REALISE is to estimate spectra which are
newly distorted by the input environment. From Eq. (1),
we formulate the distorted spectrum W (k) as follows:

A,W(k)+B,
ALAGH(W(K)

Since A, and A, are diagonal matrices, we can rewrite Eq.
(2) in elementwise representation as

W (k)

(2)

- B.) + B,.

3)

where superscript i indicates the i#th element of the vector
and the matrix. By taking a time-alignment, using Dy-
namic Programming (DP) matching, between a testing ut-
terance and its closest reference pattern, we attempted to
approximate the four noises, a;’, ai, b,, and bi. Two addi-
tive noises, b, and b%,, can be calculated directly from the
noise portion of the input and the reference pattern. Tak-
ing the average of the noise portion for the input, which is
decided from the time-alignment, b is approximated as

(4)

where v indicates a frame set which is aligned to the noise
portion of the reference pattern, K, denotes the number of
frames among v, and v*(k) is an elementwise representation
of the vector V (k). Similarly, we obtain additive noise for
the reference pattern: bw ~nl,.

On the other hand, a¥ and a'! cannot be calculated di-
rectly, but can be related to the averages of speech portions.
Taking the average of the speech portion for the input. the
relation between ¢!’ and the average is given as

~

aT i I? v (k) = s,

()

k€o

where o indicates a frame set, which is aligned to the speech
portion for the reference pattern, K, denotes the number
of frames among o, and ¥ ' is the average speech portion for
the undistorted input. We obtain a similar expression for
the reference: aiw' + n, where w' is the average

speech portion for the undistorted reference.

~
- SWY
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Finally, by substituting the four noises, we transform
Eq. (3) as follows:

w'(k) = Z”( w (k) = bL,) + 8
st —nb @, i :
i CAO R AR
Sy =My i —_nt i
o~ m(w (k) nw) + n,.

Two averages of undistorted speech, @ and ', retain
information regarding both utterance contents and speaker
individualities. The derivations of this equation imply that
they have no significant difference. Because we use the clos-
est reference pattern to the testing utterance, they are ex-
pected to be similar in regard to their contents. There is no
significant difference in the speaker individualities, because
speaker-independent speech recognition covers variations in
the speaker individualities.

Implementation of REALISE consists of the following
three steps.

1. Preliminary recognition - determines the closest
reference pattern to an input, and obtains the time-
alignment between the two (unsupervised condition).
When the correct supervising signal is given, i. e.
supervised adaptation, only the time-alignment be-
tween the input and reference pattern which is as-
signed by the supervising signal is obtained in this
part.

Environmental difference estimation - calculates
the spectral averages, i. e. s, nb, s, and ni,, ac-
cording to the time-alignment.

Adaptation - adapts all reference patterns to the
input environment by using Eq. (6). In Eq. (6), there
are three subtraction parts, and we apply a flooring
rule similar to spectral subtraction[6] to avoid the
subtraction results becoming zero or a negative value.

Although we showed DP matching based implementa-
tion of REALISE here, it can also be implemented in con-
tinuous densities HMMSs. In this case, some modifications
are required. In the preliminary recognition step, we select
the best one Gaussian probability density function (pdf)
from mixture densities at each state for obtaining the time-
alignment. In the environmental difference estimation step,
the two spectral averages for reference pattern, i. e. s,
and ni,, are calculated by averaging the mean vectors of
the pdfs which are decided in the preliminary recognition
step. Fig. 1 shows the portions on which the four spectral
averages, Sy = [si], N, = [n}], Suw = [sL], and N, = [n%),
are calculated.

This approach is expected to offer stability under unsu-
pervised conditions, because the spectral averages would be
similar to those for a correct one, even when the preliminary
recognition fails. In addition, this approach is expected to
perform effectively with a single testing utterance, because
it only requires estimating the four spectral averages. More-
over, the computational cost for this algorithm is low, be-
cause no iterative procedure is needed, unlike CDCN. These
features enable a recognition system to use a testing utter-
ance itself for adaptation.
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Figure 1: Calculating the four spectral averages

3. EVALUATION EXPERIMENTS

3.1. Experimental conditions

REALISE was evaluated in a demi-syllable HMM {8] based
250 Japanese-word recognition task. The HMM was trained
using 250 Japanese phonetically balanced words spoken by
85 speakers, which were recorded in a quiet room through
a vocal microphone. We used a 4-state left-to-right HMM
with two Gaussian mixture densities at one state for repre-
senting each demi-syllable.

The evaluation utterances were recorded in an office
room, and consist of different 250 Japanese words spoken
by seven different speakers from the training database. The
utterances were recorded through both a vocal microphone
(Mic. A), which is the same microphone as that used in the
training, and a desk-top boundary microphone (Mic. B).
The utterances were sampled at 16kHz, and ten mel-scaled
cepstrum coefficients (MCCs) were calculated every 10ms.
Finally, we used 21 dimensional feature vectors which con-
sist of ten mel-cepstrum coefficients, ten first order time
derivatives of the mel-cepstrum coefficients and one dimen-
sional delta-power. In the adaptation process, only 10 mel-
cepstrum coefficients were adapted, and the other coeffi-
cients were not adapted.

3.2. Comparison between supervised and unsuper-
vised adaptation

We compared effectiveness of REALISE in supervised and
unsupervised adaptation. In a real implementation of the
supervised adaptation, a supervising signal can be obtained
through a confirmation for recognition results. Therefore,
we used a previous utterance for adaptation.

This scheme only assumes that the testing environment
does not change during the two successive utterances: a
time-alignment was calculated between a previous testing
utterance and unadapted (initial) HMMs, and the unadapted
HMMs were adapted to the utterance, then the next utter-
ance was recognized using these adapted HMMs.

The results are shown in Table 1. Results for Mic. A
and Mic. B utterances without REALISE are also shown for
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comparison. In addition, in order to investigate the effect
of the additive noises, we evaluated all the results with and
without spectral subtraction (SS)[7).

Table 1: Comparison between supervised and unsupervised

Mic.  Supervised/ Accuracy
Unsupervised 10 SS S5
A - 96.9% 97.4%
B - 56.9% 87.8%
B Supervised  93.6% 96.1%
B Unsupervised 90.5% 95.6%

Table 1 showed that the difference in environments se-
riously degrades the recognition accuracy (96.9% — 56.9%)
without REALISE. SS gave a considerable improvement.
However, the accuracy with SS was still lower than that
for Mic. A utterances. This is because SS can cancel the
difference in additive noises, but cannot cope with the mul-
tiplicative noises.

The overall recognition accuracies with REALISE were
significantly improved from the baseline results. Use of SS
together with REALISE improved the recognition perfor-
mance, because the accuracy for the time-alignment was
improved by SS.

Comparing unsupervised and supervised cases, there
was no significant difference in the recognition accuracies.
This is because the spectral averages are roughly the same
for the incorrect reference pattern and for the correct one,
even when the preliminary recognition fails. Additionally,
the additive noises can be estimated correctly as long as
only the time-alignment for the noise portions is correct.

These results shows that REALISE is effective with a
single utterance under unsupervised condition.

3.3. Adaptation using a testing utterance

In this experiment, we present evaluation results for the
performance of REALISE using a single testing utterance
itself. In this case, only unsupervised adaptation is feasible
in practical terms. We evaluated two alternative REALISE
implementations: (INIT) - adaptation from unadapted (ini-
tial) HMMs for each testing utterance, and (PREC) - adap-
tation from adapted HMMSs which are the adaptation re-
sults for a preceding testing utterance. INIT assumes the
most severe condition wherein there is no a priori knowledge
about an input environment, other than a single testing ut-
terance itself, and that the environment changes for each
testing utterance. On the other hand, PREC assumes a
more relieved condition, considering that the environment
does not change so rapidly through one session. SS was also
applied. The other experimental conditions were the same
as those in the previous evaluation. Results are shown in
Table 2. By applying REALISE under INIT condition, per-

Table 2: Adaptation using a testing utterance

Mic. Cond. Accuracy
B INIT 92.9%
B PREC 96.3%

formance was considerably improved from 87.8% to 92.9%.
Under the PREC condition, further improvement for RE-
ALISE was observed (92.9% — 96.3%). This is because



testing utterances, which we evaluated here, had little envi-
ronmental changes through one session, and also more cor-
rect supervising signal and more accurate time-alignment
were obtained by using the adapted HMMs in the prelim-
inary recognizer, when the testing environments does not
change so rapidly through one session.

3.4. Use of REALISE together with speaker adap-
tation

In this section, in order to develop a high-performance and
robust speech recognition system, we evaluated the use of
REALISE together with the speaker adaptation method[9].

Once the system is adapted to a specific speaker by
using speaker adaptation, it maintains a high and stable
performance for the speaker. On the other hand, since
the environment may change for each testing utterance, its
change should be treated using testing utterances. There-
fore, the use of REALISE together with the speaker adapta-
tion method is expected to become environment-independent
and to show high performance for the speaker.

In this experiment, speaker adaptation[5] was carried
out using 100 utterances for each speaker, recorded through
Mic. A and Mic. B. Then, testing utterances were recog-
nized with or without REALISE. Testing utterances were
the same as those used in the previous evaluation, recorded
through Mic. B. REALISE was carried out using a testing
utterance, under PREC condition. SS was applied to all
the utterances. The results are shown in Fig. 2.
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Figure 2: Use of REALISE together with speaker adaptation:
(B-B) speaker adaptation with Mic. B and testing with Mic.
B; (A-B) speaker adaptation with Mic. A and testing with
Mic. B; ((A-B)+REALISE) REALISE for condition (A-B)

In Fig. 2, although the result for the same environ-
ment (B-B) showed a high recognition accuracy without
REALISE, the result for the different environment (A-B)
was degraded without REALISE. By applying REALISE
to the degraded condition ({A-B)+REALISE), recognition

accuracy was greatly improved and was comparable with
the result for the same environment. These results mean
that, once the system is speaker adapted in any single en-
vironment, the performance of the system is kept high in
other environments as well as in the same environment.

4, DISCUSSION
Sections 3.2 and 3.3 showed that REALISE performs effec-

tively even under unsupervised condition and using only a
single testing utterance. Moreover, as described in Section
2.2, since there is no iterative procedure, the computational
cost for REALISE is low. Hence, these three features enable
adaptation using a single testing utterance itself.

. Section 3.4 showed that, by using REALISE together
with speaker adaptation, once the user prepares the utter-
ances for speaker adaptation in any single environment, he
does not have to speak any mote utterances for speaker
adaptation, regardless of a change in the testing environ-
ments.

Although we evaluated the change in microphone here,
which was considered to be a typical example of the envi-
ronmental change, REALISE will be evaluated in various
testing environments in further work. A

5. CONCLUSION
In this paper we proposed a rapid environment adaptation
algorithm based on spectrum equalization (REALISE). The
evaluations proved that the algorithm is effective even un-
der unsupervised condition using a single testing utterance.
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