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ABSTRACT

The hidden Markov model (HMM) inversion algorithm is
proposed and applied to robust speech recognition for gen-
eral types of mismatched conditions. The Baum-Welch
HMM inversion algorithm is a dual procedure to the Baum-
Welch HMM reestimation algorithm, which is the most
widely used speech recognition technique. The forward
training of an HMM, based on the Baum-Welch reestima-
tion, finds the model parameters A that optimize some crite-
rion, usually maximum likelihood (ML), with given speech
inputs 8. On the other hand, the inversion of an HMM finds
speech inputs s that optimize some criterion with given
model parameters A. The performance of the proposed
HMM inversion, in conjunction with HMM reestimation,
for robust speech recognition under additive noise corrup-
tion and microphone mismatch conditions is favorably com-
pared with other noisy speech recognition techniques, such
as the projection-based first-order cepstrum normalization
(FOCN) and the robust minimax (MINIMAX) classification
techniques.

1. INTRODUCTION

In the real world, an automatic speech recognition (ASR)
system experiences severe performance degradation due to
the mismatch between training and testing environments.
The mismatch between training and testing conditions re-
sult from various types of sources, e.g., ambient background
noise, microphone mismatch, or various speech styles [1].
Many researchers tried to combat the variety of mismatches
by designing robust ASR systems over the recent years. In
general, the mismatch compensation methods adopted in
most speech recognition systems can be classified into four
major categories.

e Compensation before recognition stage.
e Compensation during recognition stage.
e Robust estimation of feature vectors.
¢ Inclusion of noise statistics to model.

Especially, the second category adjusts the model param-
eters of speech recognizers (instead of modifying the in-
put speech) so that the models adapt to mismatched con-
ditions, e.g., projection-based first-order cepstral normal-
ization (FOCN) [2] and robust minimax (MINIMAX) clas-
sification [1]. Since these techniques compensate the noise

during the recognition stage, it is relatively easy to incorpo-
rate the classification error with appropriate optimization
criteria, e.g., minimum classification error (MCE) [3] .

It is empirically and theoretically proved that the norm
of LPC cepstral coefficients shrink under the influence of
AWGN [2]. The FOCN technique for hidden Markov mod-
els (HMMs) compensates the norm shrinkage of LPC cep-
stral coefficients by simply shrinking the means of Gaussian
mixtures of HMM in proportion to the projection (or direc-
tional cosine) in feature vector space. The performance
improvement of FOCN is quite limited due to the very re-
stricted movement of the Gaussian mixture means toward
the origin. The MINIMAX technique [1] which utilizes the
Baum-Welch reestimation is thus developed to accommo-
date the HMMs for more general mismatched environments
by allowing more flexible movements of the means of Gaus-
sian mixtures toward the noisy speech features with appro-
priate constraints.

For a continuous density multi mixture (CDMM)-HMM,
the model parameters conmsist of five major components
A = {r, A, p,Z,W}, where x = {m;} denotes the set of
initial state probabilities, A = {ai;} is the set of state tran-
sition probabilities, pg = {pix} is the set of mean vectors
of Gaussian mixtures, & = {Zix} is the set of covariance
matrices of Gaussian mixtures , and W = {wi} is the set
of intensity weighting of Gaussian mixtures.

The HMM output probability (likelihood) P(s|)) is de-
fined to be a function of model parameters A and speech
inputs 8, i.e., P(s|A) = ¥(s, A). Based on the functional de-
pendencies of the HMM?’s likelihood to model parameters

‘A and inputs 8, the Baum-Welch inversion of HMM can be
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derived. More specifically, the Baum-Welch reestimation of
an HMM maximizes P(8|A) by finding the model parame-
ters A based on a fixed set of speech inputs {8}, while the
inversion of an HMM maximizes P(8|)) by finding speech
inputs {8} that optimize some criterion with given model
parameters A. The Baum-Welch inversion is a dual proce-
dure to the Baum-Welch reestimation algorithm [4, 5].

In Section 2, the Baum-Welch HMM inversion algo-
rithm is derived and the duality relationship between the
Baum-Welch reestimation and inversion is addressed. Sec-
tion 3 introduces the application of Baum-Welch inversion
to robust speech recognition task. Section 4 presents an
intensive comparative simulation study of the proposed ro-
bust speech classifier under- various mismatch conditions.
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Concluding remarks are given in Section 5.

2. BAUM-WELCH INVERSION OF HIDDEN
MARKOV MODEL

2.1. Baum-Welch HMM Inversion

Given the auxiliary function to be maximized:

Q0 %8,8) = 3 5 P(s.6.K13) -1ogP(s',6,K1) (1)
o K

where @ and K denote the possible state transition sequence
and the Guassian mixture segmentation sequence, respec-
tively, for a T-frame speech utterance 8 = {8;,1 <t < T}
and s denotes the sequence of old speech features and 8’ de-
notes the sequence of new speech features in speech feature
space S.

The problem of the inversion is to find 8 that maximizes

Q) A;s,8').

8 = arg max QA A;s,8")

The auxiliary function can be expanded as [4]:

T
QO Xis,8) =Y 3 P(s,8, KIX){logxe, + D logas, e
’ [ X t=1

T T
+ Zlogbe,k. (S't) + Eloswo.k.} (2)
t=1

t=1

where bix(-) denotes the observation probability for i-th
state and k-th mixture.
By equating the derivative of Q(-) with respect to 8'e,

. [}
ie., 8 :;,sx,'ss , to be zero,

T

aQ(\ A;s,8) _ D ,

_%_8_37‘3_3_) = .a?:[zzp(s,o,m,\) Y loghoqk,(8'4)]
] x t=1

N K
= Z Z P(s,i, kIA) - (8'c — pix) =0,  (3)
i=1 k=1
we can thus find the reestimated inputs 8.

5. = 2::1 Ef:l P(s, 5, k|A) - pix
‘TN T P k)

Note that P(s, i, k|)) is equivalent to

(4)

N
P(s,i, E|X) = ) a;(t = Dajiwinbix (s0)B:(1),

=1

where a;(-) and fi(-) denote the forward and backward
probabilities, respectively, therefore the HMM inversion of
3, for an N-state and K-mixture CDMM-HMM is derived

= _ E-Iil Ef=l Z_ﬁ:l a;(t — 1)ajiwixbix (3:)Bi (D pi
B = N —K PP A
Z.‘=1 Zk:l Ej=l a;{t — ajiwixbix(s:)Bi(t)

)

2.2. Duality Between HMM Reestimation and HMM
Inversion

There is a duality, in the sense of maximizing paradigms, be-
tween Baum-Welch HMM reestimation and inversion. HMM
inversion moves the input speech {s} closer to the mean
{uix} of a Gaussian mixture by fixing the mean location
of each mixture. On the other hand, the HMM reesti-
mation moves the mean {uix} location of each Gaussian
mixture closer to the input speech {8} by fixing the in-
put speech location. Figure 1 shows the conceptual dif-
ference between HMM reestimation and inversion, where
mean {pix} of each Gaussian mixture is marked as ’o’, the
noise-free input speech {8} is marked as ’x’, and the noisy
input speech {y} is marked as **’. The HMM inversion al-
gorithm moves noisy speech (*) toward mean location (o)
of a model. The HMM reestimation algorithm moves mean.
location (o) toward noisy speech location (*).

Figure 1: Conceptual difference between Baum-Welch
HMM reestimation and HMM inversion.

The HMM inversion quickly converges within a few iter-
ations just as reestimation does. The convergence of HMM
inversion is proved theoretically and experimentally in [6].

3. HMM INVERSION FOR NOISY SPEECH
RECOGNITION

The HMM inversion proposed in Section 2 can now be
applied to classification of noisy speech by adopting the
framework of robust hypothesis testing, namely the robust
HMM inversion. Similar to the MINIMAX technique [1],
robust HMM inversion adopts two stage procedure in test-
ing phase. At the first stage, it uses Baum-Welch inversion
algorithm to approximate the 8, = argmaxg g  P(8|Am)
that maximizes the hypothesized m-th model probability
P(8|Am), 1< m <M, within the mismatch neighborhood
S,n. The robustness bound, also utilized by MINIMAX
technique, can be effectively employed to avoid affine phe-
nomenon [6] which promotes the high similarity of the geo-
metrical shapes between the newly moved noisy speech fea-
tures and the Gaussian mixture means of any target class.
More specifically, the r-th coefficient of each frame of speech
feature, after applying one iteration of the HMM inversion
to nominal testing speech 8y, is checked against the inverval
I= {sg."') — Rr1p7,8{™ + Rr~p"} for some pre-specified
constants R > 0 and 0 < p < 1. If the inverted speech Bm is
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within the interval, then 8, is used as the starting point for
next iteration. Otherwise, 8, is replaced by the end point
of I which is closest to inverted speech. At second stage,
a model which yield the highest probability P(8m|Am) will
be chosen as winner.

Although the robustness bound constraint imposed on
HMM inversion technique greatly relaxes the adverse effect
caused by affine phenomenon, the extensive bounded move-
ment in HMM inversion can sometimes destroy the original
temporal structure of speech rather than moving back to
the noise-free speech structure. To further lessen the affine
phenomenon, simple noisy speech scaling (by a factor of G)
procedure is incorporated before the robust HMM inversion
so that a minimal use of inversion can be assured to main-
tain the feasible structure of original speech. This scaling
before maximization can be likewise applied to the robust
MINIMAX classification technique.

To take advantage of both Baum-Welch reestimation
and Baum-Welch inversion, the MINIMAX maximization
can be combined with the HMM inversion maximization
in a batch fashion. More specifically, after completion of
MINIMAX maximization which more or less reshapes the
original HMM model to be close to the noisy speech, the ro-
bust HMM inversion is then performed based on the newly
reestimated model A on the testing speech to fine-tune the
speech [6]. : _

Instead of combining the HMM inversion and MINI-
MAX in a batch fashion, they can be combined in a se-
quential manner [6]. In this sequential maximization, one
iteration consists of a single-step MINIMAX maximization
and another single-step HMM inversion. This sequential
maximization can be formulated under the framework of
Expectation-Maximization (EM) procedure [7], which is an
iterative procedure frequently used to solve maximum like-
lihood (ML) problem in case of incomplete data.

4. EXPERIMENTAL RESULTS

Robust HMM inversion is applied to noisy speech recogni-
tion to deal with various type of mismatch conditions. The
speech database used in this experiment is TI isolated digit
database (M = 10) which consists of 16 speakers’ digit ut-
terances. Ten CDMM-HMMs with N = 7 states and K = 4
Gaussian mixtures are used to model 10 digits, separately.
To get an HMM model which produces the highest recog-
nition performance in noise-free environments, 12-th order
LPC cepstral coefficients with frame length of 32 ms and
frame shift of 32 ms are used as speech features {1]. The
speech samples are pre-emphasized with the filter coeffi-
cients 0.97 and hamming windowed before calculating LPC
cepstral coefficients. In the training phase, 256 training to-
kens (16 speakers, 16 repetitions) are used for each HMM
digit model. In the testing phase, 300 tokens (6 speakers,
5 repetitions, 10 digits) are used for one experiment and
each experiment is repeated 10 times, with different ran-
dom noise seeds, to get sufficient statistics. Various type
of mismatch conditions are simulated, including AWGN,
jittering white noise and microphone mismatch. Jittering
white noise is generated by multipling the noise standard
deviation at each frame with one of five constants [8], i.e.,
constant={3, 2, 1, 1/2, 1/3}. To simulate the microphone
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mismatch effect, AWGN corrupted noisy speech data is con-
volved with a 2nd order FIR filter, a; = —0.45, a; = 0.55.

Table 1 shows the recognition performance of HMMs
in noisy environments when the mismatch is incurred by
AWGN at various signal-to-noise ratios (SNRs). The per-
formance of HMM which can achieve 95.47% accuracy in
noise-free (SNR=c0) environments degrades abruptly to ac-
curacy of 25.73% at SNR of 5 dB without any compensa-
tion (see Standard). The robust HMM reestimation with
pre-scaling (see Minimax) greatly improves the HMM per-
formance. For example, 36.73% (see Standard) at SNR of
10 dB is increased to 66.37% (see Minimax). It shows con-
sistent performance improvement over the entire SNR. The
robust HMM inversion with pre-scaling (see Inversion) also
improves the performance of HMM in noisy environments.
It outperforms MINIMAX technique at SNR of 15 dB and
higher. The slight performance inferiority of the robust
HMM inversion vs. robust MINIMAX in low SNR is due to
the potential structural distortion caused by inversion pro-
cess when too much movement is required. The batch com-
bination of robust HMM reestimation and inversion with
pre-scaling achieved the highest recognition performance
than any other techniques discussed above. For example,
36.73% (see Standard) at SNR of 10 dB is increased to
76.23% (see Batch). Scaling followed by sequential combi-
nation (see Sequential) also achieved similar performance
to batch combination procedure.

The projection based FOCN (see Projection) showed
little improvements due to large distortion of original model
of CDMM-HMM. The robustness bound constants (R and
p) and pre-scaling constant (G) used for this experiment are
also shown in Table 1. The constants are roughly fine-tuned
empirically.

Table 2 shows the recognition performance of HMMs
when testing speech is contaminated by jitter white noise
at various level of SNRs. Similar recognition performance
for various noisy speech compensation techniques were ob-
served as AWGN contamination.

Table 3 shows the recognition performance of HMMs
when different microphone is used for capturing the noisy
testing speech at various SNR level. The cepstral shifting
compensation is incorporated before the proposed compen-
sation techniques. For the cepstral shifting compensation,
the signal-to-noise ratio dependent cepstrum normalization
(SDCN) technique [9] is used. After incorporating SDCN
technique, the behavior of various compensation technique
is similar to the one for AWGN which is explained above
in detail (see Table 1). Again, scaling followed by batch or
sequential combination of robust HMM reestimation and
inversion achieved the best performance.

5. CONCLUSION

The Baum-Welch HMM inversion which exhibits dual prop-
erty to the Baum-Welch HMM reestimation is applied for
robust speech recognition tasks. The robust Baum-Welch
inversion and reestimation are found to be very effective
in overcoming the affine phenomenon and greatly improve
the performance of HMMs under various mismatch condi-
tions. To further reduce the adverse effect of the affine
phenomenon, the testing speech is pre-scaled before the ap-



[SNR@B) | 5 J 10 | 15 | 20 | 30 | oo |
Standard 25.73 | 36.73 | 58.90 | 76.63 | 91.97 | 95.47
Minimax 37.73 | 66.37 | 81.73 | 86.80 | 96.43 | 96.63
Inversion 35.97 | 65.40 | 82.87 | 88.10 | 96.33 | 96.70

Batch 58.23 | 76.23 | 84.57 | 89.20 | 96.00 | 96.30
Sequential 57.73 | 74.93 | 84.17 | 89.40 | 96.30 | 96.07
[ Projection " 12.73 [ 28.57 | 50.10 [ 71.23 I 88.07 I 91.87 l

R 4.0 4.0 4.0 2.0 2.0 2.0
P 0.3 0.3 0.3 0.3 0.3 0.3
G 1.6 1.6 1.6 1.6 1.6 1.6
Table 1: HMM Performance for White Noise.

[SNRAB) | 5 J 10 | 15 | 20 | 30 | oo |
Standard 27.43 | 45.27 | 62.63 | 77.63 | 91.10 | 95.63
Minimax 43.47 | 64.60 | 80.33 | 85.63 | 95.73 | 96.30
Inversion 45.00 | 65.97 | 82.27 | 87.27 | 95.93 | 96.83

Batch 60.77 | 74.90 | 83.67 | 89.77 | 96.23 | 96.40
Sequential 60.33 | 75.87 | 84.87 | 89.00 | 95.93 | 96.33
[Projection ]| 19.47 | 37.33 | 56.83 | 73.53 | 87.60 | 91.80 |

R 4.0 4.0 4.0 2.0 2.0 2.0
p 0.3 0.3 0.3 0.3 0.3 0.3
G 1.6 1.6 1.6 1.6 1.6 1.6
Table 2: HMM Performance for Jittering Noise.

[SNRB) 5 [ 10 | 15 [ 20 | 30 | oo |
Standard 19.43 { 33.63 | 52.10 | 71.07 | 88.90 | 94.73
Minimax 28.83 | 55.53 | 73.27 | 81.87 | 93.07 | 95.33
Inversion 26.97 | 52.60 | 72.60 | 83.47 | 93.07 | 95.30

Batch 43.33 | 63.67 | 77.13 | 85.17 | 92.90 | 95.20
Sequential 41.80 | 63.87 | 77.10 | 85.67 | 92.97 | 95.27
[ Projection ]| 11.63 | 18.90 | 40.77 ] 60.13 | 83.63 | 89.93 |

R 4.0 4.0 4.0 2.0 2.0 2.0
P 0.3 0.3 0.3 0.3 0.3 0.3
G 1.6 1.6 1.6 1.6 1.6 1.6

Table 3: HMM Performance for Microphone Mismatch.
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