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ABSTRACT

In previous papers the use of Parallel Model Combination
(PMC) for noise robustness has been described. Various
fast implementations have been proposed, though to date
in order to compensate all the parameters of a system it has
been necessary to perform Gaussian integration. This pa-
per introduces an alternative method that can compensate
all the parameters of the recognition system, whilst reduc-
ing the computational load of this task. Furthermore, the
technique offers an additional degree of flexibility, as it al-
lows the number of components to be chosen and optimised
using standard iterative techniques. The new technique is
referred to as Data-driven PMC (DPMC). It is evaluated
on the Resource Management database, with noise artifi-
clally added from the NOISEX-92 database. The perfor-
mance of DPMC is found to be comparable to PMC, at
a far lower computational cost. In complex noise environ-
ments, by more accurately modelling the noise source, us-
ing multiple components, and then reducing the number of
components to the original number a slight improvement in
performance is obtained.

INTRODUCTION

Practical speech recognition systems must be able to
achieve good performance in a wide variety of noise en-
vironments. These environments may vary in both the ad-
ditive interfering noise, such as fans, engine noise, and the
channel conditions over which the speech is being recorded,
such as microphone variation. These problems effect all
speech recognition systems. However, the task of achieving
noise robustness for medium to large vocabulary systems
is far harder, as in order to_achieve good recognition per-
formance it is necessary to incorporate dynamic coefficients
into the feature vector. The effect of interfering noise on
these dynamic coefficients is complicated and makes many
techniques used for small vocabulary systems ineffective for
larger vocabulary systems.

Most existing techniques for making medium to large vo-
cabulary systems robust to noise, rely on making collections
of ‘stereo’ data where one track is noise-free and the other is
recorded in a typical noisy environment {4, 5]. By learning
sets of mappings between the two, noisy test speech from
an unknown environment can be recognised by using the
most appropriate of the pre-trained mappings. However,
these techniques require new noise data corrupted data in
order to handle new noise sources. It would be preferable
to have a scheme that adapted to the current environment.
This is the approach adopted by Parallel Model Combina-
tion (PMC).

1.
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In PMC:the speech models are modified to be representa-
tive of the speech in the new acoustic environment given an
estimate of the additive noise. However, a major problem
with the technique is the time taken to adapt the param-
eters of the models. For small vocabulary systems, where
using only static parameters achieves acceptable recogni-
tion performance, very fast approximate techniques can be
used [1]. However, such approximations are not applicable
when dynamic parameters are required to be compensated.
This need to increase the speed of the compensation pro-
cess has lead to the development of the Data-driven Parallel
Model Combination (DPMC) technique described here. In
this implementation of PMC the speech models are used
to generate separate samples of ‘speech’ and ‘noise’. These
are then combined according to the appropriate ‘mis-match’
function to obtain the noise corrupted speech samples which
are then used to estimate the corrupted models. Using this
technique, the compensation time may be dramatically re-
duced. In addition to increasing the speed of compensa-
tion the technique also allows the generation of an arbi-
trary number of components per state, thus removing the
problem of the combinatorial expansion of states or mixture
components which occurs in standard PMC when the noise
source is non-stationary.

This paper describes the DPMC technique and presents
results for a noise corrupted Resource Management recog-
nition task.

2. PARALLEL MODEL COMBINATION

2.1. Static Parameters

PMC attempts to estimate the parameters of a corrupted
speech model. It assumes that a speech model trained on
clean speech log spectra S'(t) is available and that a model
of the noise log spectra N (¢) can be estimated on-line. Note
that in this and subsequent equations, the super-script !
is used to indicate that the variable is in the log spectral
domain, variables without super-scripts are in the linear
spectral domain. Under the assumption that the speech
and noise are additive in the linear spectral domain

(1

where the subscript i indexes the " component of the spec-
tral feature vector and g is a gain matching function intro-
duced to account for the difference between the training
and testing speech levels. PMC then estimates the statis-
tics of O'(£) using the statistics of S'(t) and N!(t). For
recognition, the speech is typically modelled in the log do-
main using Hidden Markov Models in which each state is
a multivariate Gaussian or a mixture of Gaussians. For

OL(t) = log(g exp(Si(t)) + exp(Ni(t))).
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this case, therefore, the PMC method involves applying the
above mis-match function to each pair of speech and noise
states to yield a new compensated noisy speech state whose
means and variances are computed from the expected values
of O}(¢). If the noise HMM has N states then the number
of states in the compensated HMM is increased by a factor
of N compared to the original [2]. However, in many cases,
including previously reported experiments, it is sufficient
to model the noise with a single state HMM and in this
case the PMC-based compensation does not increase the
computational complexity of the recogniser. Notice that
the implicit assumption is being made that the addition of
the noise does not change the state/frame-component align-
ment between the speech and the HMM.

In practical systems, cepstral coefficients are often used
in preference to log spectra. This does not affect the PMC
method since the discrete cosine transform is linear and
hence the cepstral parameters can be easily mapped to and
from the log spectral domain [1].

2.2. Delta and Delta-Delta Parameters

For large vocabulary speech recognition it is necessary to
incorporate dynamic coefficients in the speech parameteri-
sation to achieve good performance. The mis-match func-
tion for the static parameters relies on the fact that the
speech and noise are additive in the linear spectral domain.
When dynamic coefficients are used this simple combina-
tion is not possible. Hence to implement delta coefficient
compensation within the PMC framework, it is necessary
to obtain a new ‘mis-match’ function [3] for the delta pa-

rameters, AOL(t). If
AOQ(t) = O°(t+w) — O°(t — w) (2)
where w is the difference offset, then

AOE) = log (exp(ASH(t) + SH(t—w)+g') (3)
+ exp(AN](t) + Ni(t — w)))
—log (exp(S}(t — w) + ') + exp(Ni (¢ — w)))

where g' = log(g). The corrupted speech cepstral delta
coefficients have been rewritten in terms of the static and
delta coefficients of the clean speech and interfering noise.
The expression for the delta coefficient at time ¢ is depen-
dent on the static coefficients at time ¢t — w. This is con-
trary to one of the assumptions behind the use of HMMs for
speech recognition, that the speech waveform may be split
into stationary segments with instantaneous transitions be-
tween them. However, if the segments are assumed to be
long enough then the statistics of S(t — w) will be approxi-
mately the same as those of S(t), and those of N(t—w) will
be approximately the same as N(¢). With this assumption,
statistics exist for all the variables of equation 3. Alterna-
tively, it is possible to generate an additional set of models
built on statistics at time ¢ — w.

3. DATA DRIVEN PMC

DPMC is a new technique to estimate the parameters of the
models. It addresses two problems associated with PMC.
The first is the computational overhead associated with
compensating large vocabulary systems, especially where
delta and delta-delta parameters are required to be com-
pensated. When performing numerical integration of the
mismatch functions, it is necessary to integrate in the Log-
Spectral domain, hence all elements of a full covariance

matrix must be calculated. For a 24 dimensional Log-
normal model this requires 300 separate numerical integra-
tions. This problem is overcome in DPMC by generating -
a set of noise corrupted speech vectors for each speech and
noise component pairing. These vectors may be generated
in either the Log-Spectral or Cepstral domains. Once the
data has been generated it is only necessary to calculate
the means and variances to obtain the ML estimate of the
corrupted speech model; a simple and fast task. The com-
putational overhead is now in synthesising the data and is
dependent on the number of points generated.

The second problem associated with PMC is in situations
where a complex noise model is required. In standard PMC
every speech-noise component pair must be separately mod-
elled. Thus a two component per state noise model and a six
component speech model results in a twelve components per:
state corrupted speech model with an associated run-time
computational overhead. Since a set of corrupted speech
vectors has been generated for each speech noise state pair-
ing, it is now a standard HMM training problem to obtain
the ML estimate of the data, with as many or few compo-
nents as desired.

The compensation process thus uses equations 1 and 3 to
generate the samples of the noise corrupted speech. This
yields a set of 7' data points in the cepstral domain. The
weights, means and variances are then estimated using [3]
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In order to initialise the estimation process it is necessary
to give an initial estimate of the state components. If the
number of components is to be the number of noise compo-
nents times the number of speech components, the initial
estimates are generated by knowledge of which component
pair generated the corrupted observation. This is the 0 it-
eration estimation and is equivalent to assuming that the
frame/component allocation does not change. If the num-
ber of components is to be reduced the initial estimate may
be made by merging components, or taking the heaviest set
of components.

It is only possible to combine components within a state,
as the states contain the only temporal information at the
model level. Thus, it is not possible to take a three state
left to right model and estimate a two state left to right
model in any sensible fashion.
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4. RESULTS

4.1. Lynx Helicopter Noise

A set of six component models, similar to those used for
the ARPA RM system developed at CUED [6], were gener-
ated. Additionally, a set of Noisy models were generated by
corrupting the RM training database with Lynx helicopter
noise. These models were generated in a single pass using
the complete dataset from the clean speech. By generating
models in this way they should be the true model set that
PMC attempts to estimate.

Compensated (DPMC)

1-Divergence

-2 3 {
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3 1 !
15 20 25
Fealure Vector Coefficient

Figure 1. |-Divergence between the Model Set trained on Noise
Corrupted data and each of the Clean Model Set, the PMC
Compensated Model Set and the DPMC Compensated Model
Set on Lynx Additive Noise Corrupted RM at 18-20dB

To investigate how closely models obtained using PMC
and DPMC are to this Noisy model set, the average I-
Divergence over all the Gaussian components was calcu-
lated. The results for each feature vector component are
shown in figure 1. Feature vector coefficients 1-13 are the
static parameters Co to Ci2, 14-26 are the deltas and 27-
39 are the delta-deltas. For the uncompensated models the
static parameters are the most effected by additive noise,
with the low order cepstra being distorted to a greater ex-
tent than the higher order Cepstra. The use of both PMC
and DPMC show comparable performance and for both
the static and the delta parameters have a significantly
lower average I-Divergence than the uncompensated mod-
els. However for the delta-delta parameters the reduction
in the I-Divergence is not so dramatic, indeed for the higher
Cepstra the I-Divergence is higher. PMC does however re-
duce the maximum and the variance of the I-Divergence of
the model set.

Table 1 shows the performance of these models on a
noise corrupted version of the RM database, Lynx heli-
copter noise was added at 18-20dB. As described in pre-
vious reports, the use of PMC achieves good performance
in the noise corrupted environment, comparable with that
of training the model in the noise environment. The per-
formance of the clean models Clean is poor. From figure 1
the advantages in compensating the delta-delta parameters
appear to be small. On the Feb’89 test set not compensat-
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Model Test Words | Subs | Del | Ins | Word
Set Set Corr Err | Err | Err Err
Feb’89 71.2 25.3 3.6 9.9 38.7
Clean | Oct’89 77.6 19.1 33 | 9.5 32.0
Feb’91 75.5 21.9 2.6 | 89 33.4
Feb’89 93.4 4.6 2.0 0.8 7.3
Noisy | Oct’89 92.3 5.7 2.0 | 0.9 8.6
Feb’91 94.5 4.4 1.0 1.4 6.9
Feb’89 92.6 5.2 2.2 | 0.9 8.3
PMC Oct’89 92.8 5.1 2.0 1} 09 8.1
Feb’91 93.8 5.1 1.1 1.1 7.3

Table 1. Comparison of the Performance of Clean models,
Models trained on noise corrupted date and PMC compensated
models for a Six Component System on Lynx Additive Noise
Corrupted RM at 18-20dB

ing the delta-delta parameters increased the word error rate
from 8.3% to 10.4%. Thus, for this task there is an advan-
tage in compensating the delta-delta parameters. This may
be explained by examining the distance between the means
of the PMC compensated models and the Noisy models.
PMC improves the accuracy of means of the delta-deltas,
however the variance compensation appears to be poor. As
the recognition performance is effected by the means to a
greater extent than the variances, the performance may im-
prove, despite the increase in the I-Divergence.

Test Set | No. Pts. | Mean | Std.Dev.
eb’89 1200 8.34 0.22
Oct’89 1200 7.96 0.18
Feb’91 1200 8.14 0.32

Table 2. Word Error Rate Statistics for Data Driven PMC at
18-20dB Lynx Additive Noise Corrupted RM

The results for DPMC using the same set of clean speech
models and noise model is shown in table 2. Comparing
these results with standard PMC shows a slight degradation
in performance. However, the time taken to compensate the
model set is an order of magnitude faster than the numerical
integration. In addition to the average performance there is
a standard deviation quoted, as the corrupted speech mod-
els are estimated using randomly generated points and are
thus dependent on the random seed value.

4.2. Machine Gun Noise

Model Test Words | Subs | Del [ Ins | Word
Set Set Corr Err | Err | Err Err
Feb’89 65.3 31.3 3.4 | 17.0 51.6
Clean Oct’89 65.7 31.0 3.3 | 16.8 51.1
Feb’91 67.2 29.7 3.1 | 195 52.3
Feb’89 86.9 9.6 3.5 1.7 14.8

1 comp. | Oct’89 87.1 7.5 4.2 2.1 149 -
Feb’91 89.7 8.0 2.3 1.7 12.0
Feb’89 89.5 7.1 3.4 0.8 | 113
2 comp. | Oct’89 88.9 7.3 38 | 09 12.0
Feb’901 91.2 6.7 2.1 0.8 9.6

Table 3. Comparison of Uncompensated, a Single Gaussian
Noise Model and a Two Gaussian Component Noise Model for
Data Driven PMC at 4-6dB Machine Gun Noise using 1200
points per state




To investigate the ability to alter the number of com-
ponents in complex noise environments, machine gun noise
was added to the RM database at 4-6dB. This is a very dis-
tinct two state/component noise. The performance of the
clean, single component noise model and two component
noise model are shown in table 3. The single component
noise model performs surprisingly well considering the na-
ture of the noise, achieving 14.8% on the Feb’89 test set. By
incorporating an additional component in the noise model
this figure may be reduced to 11.3%. However the number
of components in the compensated system is 12, resulting
in a run-time overhead.

Test Words | Subs | Del [ Ins | Word

Set Corr Err | Err | Err Err
Feb’89 87.6 8.5 3.9 1.7 14.1
Oct’89 88.0 7.9 4.1 1.8 13.8
Feb’91 90.1 7.4 2.5 1.1 11.1

Table 4. Performance of a DPMC Compensated System using
a Two Component Noise Model and Re-combining the Com-
ponent Associated with each Speech Components

The simplest method to reduce the number of compo-
nents associated with each state is to recombine all compo-
nents which were generated from the same speech compo-
nent. The results of this scheme are shown in table 4. By
improving the accuracy of the noise model, then reducing
the number of components in this simple fashion, has re-
duced the word error rate, for example on the Feb’89 test
set the word error rate has been reduced from 14.8% to
14.1%.

Imtial Test Words | Subs | Del | Ins | Word
Data-set Set Corr Err | Err | Err Err
Feb’89 88.8 7.8 3.3 | 0.8 11.9

Heaviest | Oct’89 88.2 8.4 34113 13.2
Feb’91 90.2 7.6 23114 11.2

Feb’89 87.3 9.1 3.6 1.1 13.8

M. Info. | Oct’89 86.7 9.5 38 | 1.0 14.3
Feb’91 90.4 7.2 2.4 1.0 10.6

Table 5. Comparison of Various Initial Data-set Techniques
with a Two Gaussian Component Noise Mode! using Data
Driven PMC at 4-6dB Machine Gun Noise with 1200 points
per State, Mapping back to 6 Components using 10 iterations
of EM

Using DPMC it is possible to choose the number of com-
ponents in the compensated models and to use standard EM
techniques to obtain maximum likelihood estimates. For
this work the number is the original number of speech com-
ponents, hence there will be no additional run-time over-
head. It is necessary to decide on the initial set of compo-
nents to be used in the iterative scheme. Two techniques for
estimating the initial set of components were investigated.
Firstly the six “heaviest” components, Heaviest, may be
used as initial estimates. Alternatively, the closest compo-
nents according to a mutual information measure may be
merged to achieve the required number,M. Info. 10 iter-
ations of EM were then used to smooth the distributions
and obtain the ML estimates. The results are shown in ta-
ble 5. The best performance was achieved using the Heav-
iest initial components. With this system the performance
on Feb’89 test set was reduced from 14.8% for the single
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component noise model and 14.1% for the speech combined
two component system to 11.9%. However, overall the per-
formance is worse than that of the standard two component
system.

5. CONCLUSIONS

Initial results have been presented on the use of a new
technique for implementing PMC, called Data-driven PMC.
This technique has been shown to achieve comparable per-
formance with standard PMC at a far lower computational
cost. The performance of DPMC in complez noise environ-
ments, was then investigated. By using multiple component
distributions to improve the accuracy of the noise model,
recognition performance was found to improve, albeit at the
computational cost associated with doubling, in the case of
a two component noise model, the number of components
in the system. To overcome this problem, various merging
and smoothing schemes, were examined. A simple scheme
of combining according to the original speech component,
was found to improve performance. Further slight improve-
ments were obtained by smoothing the set of the heaviest
components with EM. These performance gains were ob-
tained with a very distinct two state/component interfer-
ing noise. Whether similar gains may be obtained when
the noise source is not so distinctly multi-state needs to be
investigated.
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