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ABSTRACT

This paper proposes an adaptation method for universal
noise (additive noise and multiplicative distortion) based on
the HMM composition (compensation) technique. Although
the original HMM composition can be applied only to addi-
tive noise, our new method can estimate multiplicative dis-
tortion by maximizing the likelihood value. Signal-to-noise
ratio is automatically estimated as part of the estimation of
multiplicative distortion. Phoneme recognition experiments
show that this method improves recognition accuracy for
noisy and distorted speech.

1. INTRODUCTION

Background noise, channel noise, and channel distortion
are crucial problems in speech recognition. They are usually
modeled by combining additive noise and multiplicative dis-
tortion in the linear spectral domain. Speaker characteristics
can also be regarded as multiplicative distortion [1]. If both
additive noise and multiplicative noise can be simulta-
neously estimated, that is, if universal noise adaptation can
be achieved, it should to be very useful in speech recognition
applications.

Various methods for removing estimated noise and distor-
tion have been proposed, including spectral subtraction for
additive noise and cepstral normalization for multiplicative
distortion. However, since these methods utilize the average
values of linear spectra and cepstra as noise and distortion,
they cannot be simply extended to remove combinations of
additive noise and multiplicative distortion.

An accurate noise adaptation method using a noise model,
called HMM composition or compensation, has recently
been proposed for additive noise {2][3]. This method creates
HMM s for noisy conditions using speech HMMs and a noise

129

HMM. It uses the mean and covariance of the noise distribu-
tion to adapt the speech distribution. However, it does not
consider multiplicative distortion.

A different approach has been proposed to estimate either
the multiplicative noise or additive noise spectrum by maxi-
mizing the likelihood value. Rahim et al. removed telephone
line bias in the cepstrum domain (multiplicative distortion)
[4]. Rose et al. formulated the maximum likelihood param-
eter estimation procedure for additive noise or multiplicative
noise [5].

This paper extends the HMM composition method to ac-
commodate both additive and multiplicative noise by using a
maximum likelihood estimation criterion. In this framework,
the S/N estimation is performed as part of the estimation of
multiplicative distortion.

2.NOISY AND DISTORTED SPEECH MODELING

The model for producing speech signals under most noisy
conditions is shown in Figure 1. Speech signal S is produced
by speech HMMs and noise signal N is produced by a noise
HMM. Both S and N are defined in the linear-power spectral
domain. First, S is multiplied by multiplicative distortion G,
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Figure 1. A model for processing noisy
and distorted speech.
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which includes speaker characteristics. Then additive noise
N is added to speech signal SG. Finally, the speech signal is
multiplied by multiplicative noise H, which includes line and
channel distortion. We thus obtain the final noisy and dis-
torted speech signal as X (= H(GS + N) = HGS + HN). By
setting W = HG, we get X = WS + HN; therefore, the basic
noisy speech model can be converted into the model shown
in Figure 2.

" The HMM for HN can be trained by using the signal re-
corded for a period without speech. The HMMs for S can be
made from noise-free speech. The problem is how to esti-
mate W. Since W is multiplicative distortion, it can be writ-
ten as

(M

in the linear spectrum domain, where p+1 is the number of

W = { wo, w1, Wz, ..., Wp),

power spectral components.

3. FORMULATION OF ADAPTATION

To estimate the value of W, we model X by combining the
HMMs for HN and WS using the HMM composition
method. Here we assume that W is a fixed vector. Then W is
estimated by maximizing the likelihood score P(OIM(W)) or
P(O,AIM(W)), where P(OIM(W)) is the trellis likelihood
score, P(O,A[M(W)) is the Viterbi likelihood score, O ={x,,
X, ..., X;} 1S a time sequence of input vectors, M(W) is a set
of phoneme models as functions of W,and A = {s, s,, ..., 5)
is the time sequence of states.

To maximize P(OIM(W)) or P(O,AIM(W)), we propose the
following two methods.

(1) Exact method

The P(O,AIM(W)) can be maximized by using the steepest
descent method, using the following iterative equation.
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Figure 2. A converted model for processing noisy
and distorted speech (W=HG).
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where ¢ is the step size.

If the output probabilities are represented by mixture
Gaussian densities, it becomes complicated to maximize Eq.
(2) directly. Therefore the maximum single Gaussian density
in each mixture is used instead of multiple mixtures.
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Viterbi decoding is used to obtain P(O,AIM(W)), u = {p,,
My b}, and 2= {Z,X,,.... X }, where L and X are the se-
quences of mean vectors and covariance matrices selected by
the Viterbi algorithm,

To deal with many random variables in the equations, the
following conventions are used. R_represents source R in do-
main ¢, where ¢ ={cep, Ig, lin}. For instance, X__is the ran-
dom variable associated with noisy speech in the linear spec-
trum. The corresponding Gaussian distribution is N({uX=,
XXty The main notations for random variables are as fol-
lows,

N“p, Nl', N,.: Noise in the cepstrum, the logarithm spec-
trum, and the linear spectrum domain.

S S, S0 Speech in the cepstrum, the logarithm spec-
trum, and the linear spectrum domain.

Xup, Xl', X,,.- Noisy and distorted speech in the cepstrum,
the logarithm spectrum, and the linear spectrum domain.

From the definition for HMM composition (compensa-
tion), the following equations are obtained.
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uxcep=r-luxlg (10)

T
3 Xcep_lyXig -1 (1)

I': cosine transform, T: transpose, and u,v: parameter indi-
ces, 0<u,v <p.

Ignoring the differential coefficients in Eq. (2) calculated
from the covariance matrix (considering only the differential
coefficients calculated from the mean vector), we obtain the
following equation, with 1<u < p:

w, (k) =w,(k-1)
P, X 1 X T xcep-l X,
3 {-log((2m)* 1 T, P D= Gk = ke TIEF (= ™))

ve—! ow

=w,(k-1)+

Xew x 1 Xean ™' 3 Xeq
i O I -
T2 ow, 2

dwy
=w,(k-1}+
e

Wa

x'l b'e -1 1 X -1
52{1(1""3“'_()72! cep (xl_“z(ev)+_(x[_“:(=q)rzl cep -1 )
T2 aw, 2

(12)
By differentiating Eq. (8), we obtain
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Finally, Eq. (12) can be calculated by using Eq. (13).
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Figure 3. Parallel method.

(2) Parallel method

The parallel method (Figure 3) is mathematically simpler
but computationally more costly than the exact. In this
method, several sets of models having different W,’s are pre-
pared. Using these models, the likelihood scores,
P(XIM(W)), are calculated for all i's, and a set of models
having maximum likelihood is selected.

This method is especially useful when the S/N ratio is esti-
mated. Estimating the S/N ratio is a special case of estimat-
ing W where W, = {k, k,, ..., k }. Various ks are prepared at
several intervals in the S/N ratio to estimate the S/N ratio.

4. EXPERIMENTS

We tested our method in terms of the phoneme recognition
rate. Noisy speech data were artificially created on a com-
puter, as shown in Figure 4. Noise recorded in a computer
room was added to clean speech data at 12 dB. The data were
then passed through a distortion filter whose characteristic
was set to 1-0.97z; the input data were sampled at 12 kHz.
The input feature vector consists of 16 cepstra, 16 delta cep-
stra, and 1 delta power.

A diagram of our adaptation method is shown in Figure 5.
The speaker-independent HMMs were trained with speech
data recorded from 64 speakers under noise-free conditions.
One sentence with the transcription was used for adaptation.
The training sentence was the first sentence in the phoneme-
balanced sentence set. The S/N ratio was first estimated by
using the parallel method. This value was then used as the
initial value for the next estimation. Then, W was estimated
using the exact method. Using these two steps speeds up the
convergence of the likelihood value.

In the exact method, Viterbi decoding is performed first to
obtain W (= {K, Ky ...l P and Z (= {Z,,Z,,...Z.}). Then a

Noise data recorded
in a computer room

Speech data Nois
recorded under Y
. ... , - speech data
noise-free conditions Distortion >
filter

Figure 4. Procedure for making noisy speech data.
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new W is calculated. These steps are repeated until the likeli-
hood value converges, at which point the HMMs for noisy
and distorted speech are obtained.

Using these HMMs, we performed phoneme recognition
experiments. Fifty-one evaluation sentences were uttered by
one male speaker. Since our database has only phoneme de-
scriptions and no precise phoneme labeling, we used an
evaluation algorithm for the phoneme recognition rate that
does not need precise phoneme labeling [6] .

5. RESULTS

As shown in Table 1, the phoneme recognition rate for
noise-added speech improved from 58.8% to 72.1% when
using the S/N estimated by the parallel method. This indi-
cates that the parallel method works well in estimating the S/
N ratio. The phoneme recognition rate increased even more
from 72.1% to 75.0% when we used the estimated W. This
suggests that what our method estimates is a kind of speaker
characteristic.

For the filtered distorted speech, the phoneme recognition
rate increased from 44.7% to 56.7% when the estimated S/N
ratio was used, and the recognition rate greatly increased
from 56.5% to 67.7% when the estimated W was used. This
means that our method can effectively estimate the filter
characteristic.

6. CONCLUSION
Our proposed noise adaptation method estimates both ad-

Sentence
fo_r_adaptaticg Estimating S/N ratidF ..........
wTTTTE (parallel method) [~ o
% . Noise HMM
' S/Nratio ™~

"ﬂ{ Viterbi decoding

Y
Estimating W
(exact method

Yes
Noisy HMMs
Figure 5. Procedure for making noisy HMMs.

Speech HMMs

ditive noise and multiplicative distortion in a single frame-
work. It estimates the multiplicative distortion by maximiz-
ing the likelihood value of a training sentence, based on the
HMM composition technique. Phoneme-recognition experi-
ments confirmed that this method greatly improves the rec-
ognition rate for noisy and distorted speech data.
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Table 1. Phoneme recognition results.
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