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ABSTRACT

This paper addresses the problem of speech recognition in
a noisy environment by finding a robust speech paramet-
ric space. The framework of Linear Discriminant Analy-
sis (LDA) is used to derive an efficient speech paramet-
ric space for noisy speech recognition, from a classical
static+dynamic MFCC space. We first show that the de-
rived LDA space can lead to a higher discrimination than
the MFCC related space, even at low signal-to-noise ratio
(SNR). Then, we test the robustness of the LDA space to
variations between the training and testing SNR. Exper-
iments are performed on a continuous speech recognition
task, where speech is degraded with various noises: Gaus-
sian noise, F16, Lynx helicopter, autobus, hair dryer. It was
found that LDA is highly sensitive to SNR variations for
white noises (Gaussian, hair dryer), while remaining quite
efficient for the others.

1. INTRODUCTION

In the past few years, researchers have focussed their at-
tention on finding robust acoustic features effective for au-
tomatic speech recognition. Linear Discriminant Analysis
(LDA) has become a popular approach to improve discrim-
ination in a speech feature space. This led to improvements
in recognition performances for both small and large vocab-
ulary system [1, 2, 3, 4]. However, very little work has been
reported to determine the robustness of LDA on a contin-
uous noisy speech recognition task to mismatches between
the training and the testing acoustical environment.

In this work, a MFCC+AMFCC vector space was trans-
formed into a more discriminative space, using LDA. Our
experiments on a continuous speech recognition task show
the effectiveness of a parametric space obtained from LDA
transformation for various noisy speech, compared to a clas-
sical MFCC space. We study the sensitivity of feature vec-
tors obtained from a LDA transformation to variations be-
tween training and testing environmental conditions. Our
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results show that this sensitivity is highly noise dependent.
In some noisy conditions, the recognition rate drastically
drops when the training and testing signal-to—noise ratio
(SNR) does not match, while on others noisy conditions, the
LDA parametric space remains quite effective. Of course,
at high SNR, we observe that the LDA remains efficient
when training and testing SNR differs.

This paper is organised as follows. Section 2 presents the
framework of LDA and its application to phoneme discrim-
ination. Experiments and results are given in Section 3.
Section 4 concludes the paper.

2. LINEAR DISCRIMINANT ANALYSIS

LDA aims at improving discrimination between classes in a
vector space, by finding a linear transformation from a D-
dimensional vector space to a d-dimensional vector space.
A dimensionality reduction of the vector space (d < D) can
optionally be performed [5]. Let X be a D-dimensional
The d-

dimensional transformed vector is then expressed as U*X.

vector, and U a D x d transformation matrix.

The transformation is defined according to the usual crite-
rion which maximises tr(W~'B), where tr(m) denotes the
trace of matrix m. W and B are the within and between

class covariance matrices defined as:

K
B = % gnk(l"k — ) — )’ (1)
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where N denotes the total number of training patterns, K
the number of classes, and n; the number of training pat-
terns of the kth class. The mean ui of the kth class and
the overall mean u are given by:
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where z, is the nth training pattern from the kth class.

Using the optimisation criterion previously defined, it can
be shown that the d column vectors of the transformation
matrix U are the d eigenvectors associated to the d largest
eigenvalues of the matrix W™ I!B. As W™ !B is not a symet-
ric matrix, the computation of all eigenvectors and eigenval-
ues is not trivial. In practice, we use the method described
in [6]. Let C be the unitary matrix diagonalizing W to L,
W = CLC!. Let V be the unitary matrix whose column
vectors are the d eigenvectors corresponding to the d largest
eigenvalues of the symmetric matrix § = L~'/2C*BCLY2.
Then, the matrix U is given by U = CL™Y/?V.

When LDA is applied as a preprocessing step in a con-
tinuous speech recognition system, we have to choose what
is the best definition of classes we want to discriminate.
As our continuous speech recognition system VINICS uses
stochastic trajectory phoneme models 7], and is therefore
a phoneme based recogniser, we decide to associate a class
to a phoneme. The unique transformation matrix U is de-
rived from a training corpus labelled at phonetic level.

3. EXPERIMENTS AND RESULTS

3.1. Experimental settings

Experiments were performed on a continuous speech recog-
nition task in a speaker dependent mode, using our VINICS
speech recognition system based on Stochastic Trajectory
Models [7].

The database was recorded from 4 different French speak-
ers. No speaker selection was performed to optimise the
recognition rate. 79 sentences were read by each speaker
as training material. Test speech text consisted of 241 sen-
tences with 1482 words read by each speaker. Vocabulary—
independent training was used: the vocabulary of the train-
ing text has been designed to have little coverage over that
of recognition text. The recognition task has a vocabulary
of 1011 words, with a bigram word perplexity of 25. We
did not use word transition probabilities, so the effective
perplexity is larger than 25. A 13" order MFCC was ap-
plied on speech signals sampled at 16kHz, with a frame
shift of 10ms using a window length of 25.6ms. AMFCC
computed using a classical regression were added to the
MFCC. We projected this 26-dimensional vector space into
a 20-dimensional vector space. No attempt was made to
optimise the dimension of the projection space.

32 context-independent phone models including one si-
lence model were designed for all experiments. The acoustic
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models were trained using the EM algorithm [8]. In all ex-
periments, we used diagonal covariance matrices.

We used five different kinds of noise: Gaussian noise,
aircraft noises (F-16 and Lynx helicopter) taken from the
Noisex database [9], vehicle noise recorded from inside a
moving city bus, and a hair dryer noise. Noises were sub-
sequently added to the speech waveform at various SNR,

from 0dB to 36dB, with a 6 dB step.

All experiments were done in a cross SNR mode, de-
scribed as follows:

The LDA transformation matrix Usng, ., is learnt from
the labelled training corpus at a given reference SNR,
called SNR .s.

The SNR,.s dB training corpus is transformed using
UsnR,.s into a LDA parametric space.

Acoustic models are built using the transformed train-
ing corpus from step 2. These models are specific to
speech at SNR,.¢ dB in the LDA parametric space.

The SNRyest dB testing corpus is transformed using
UsnR,.; computed at step 1. The SNR¢est dB training
corpus is transformed too, and is used only for the
phonetic evaluation of the models.

The testing corpus obtained from step 4 is recognised
using models provided from step 3. This is the cross
SNR experiment.

It should be noted that the cross SNR experiment corre-
sponds to the practical situation where the transformation
matrix and the acoustic models are derived from a given
environment (SNR,.¢), and are used to recognise speech in
a different environment. (SNRiest).

3.2. Results

We performed two set of experiments. The first one con-
sisted in evaluating the phonetic recognition rate on the
training. database obtained from step 4. These experi-
ments were performed to compare the discrimination abil-
ity between acoustic models built from the transformed
speech in cross SNR mode, to models derived from speech
parametrised in a classical MFCC space. Of course, the vec-
tor dimensions are the same in both MFCC and LDA space:
13 coefficients in the MFCC space, and the LDA transfor-
mation projects a 26 dimensional MFCC+AMFCC vector
into a 13 dimensional vector. Results are in term of % cor-
rectly recognised phonemes on the labelled training corpus,
averaged over the 4 speakers. Results are given for 3 of the
5 kinds of noises, the Gaussian noise, the Lynx helicopter
noise, and the Hair dryer noise (cf. Table 1). When the
testing and training SNR are matched (SNRyest = SNR.ef),



the acoustic modelisation is clearly more effective in the
LDA domain than in the MFCC domain, for every SNR

and every noise.

When the training and testing SNR differ (SNRtese #
SNR.ef), the results are highly noise dependent. For Gaus-
sian noise, phonetic recognition rate drastically falls in the
LDA parametric domain. For example, when the testing
SNR is 6dB and the training SNR is 0dB, only 16% of the
training phonemes are correctly recognised using models
built in the LDA space, against 42% in the MFCC space.
For the Lynx noise, it appears that LDA space results out-
perform those from the MFCC.space. But for the Hair dryer
noise at low SNR, MFCC space is more noise resistent than
LDA space and vice versa at high SNR.

The second set of experiments consisted in evaluating
the recognition performance on the test corpus, obtained
from step 4. Experiments were performed only on speech
parametrised in the LDA domain. This time, we used a 20
dimensional vector space. The results are given in term of
% accuracy where for N tokens, S substitution errors, D
deletion errors and [ insertion errors, accuracy is expressed
as [(N =S — D —1I)/N] x 100%. The HTK toolkit [10] is
used for scoring the recognition results, which are averaged
over the 4 speakers (cf. Table 2).

Our recognition system strategy prematurely cuts
branches with low probabilities in the sentence search stage,
leading to very low (and biased) recognition rates, espe-
cially when acoustic models are inaccurate. This explains
the meaningless results in Table 2, for Gaussian white noise
when training and testing SNR does not match. Results
from Table 2 are in agreement with those from Table 1.
It appears that LDA parametric space is very efficient for
noisy speech reéognition when the training and testing SNR
are identical. For example, the recognition rate at 6dB is
97.4% (averaged over all noise types) of the recognition rate
at 36dB. The sensitivity to SNR variations is noise depen-
dent, especially at low SNR. For example, when the training
is performed at 18dB, recognition rates are still good when
testing at 12dB with F16, Lynx and Bus noises, but fall
with the Hair dryer noise (15% lower) and collapse with
the Gaussian noise (43% lower). At high SNRs (>24dB),
the recognition rate is quite insensitive to small variations
around the reference SNR, the worse case still being with
Gaussian noise.

4. CONCLUSION

In this paper, we first shown that a LDA transformation
can lead to a parametric space giving a high accuracy to
noisy speech recognition, compared to a classical MFCC
space, even at very low SNR (at 6dB, the recognition rate is
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SNR SNR test — Gaussian noise
ref 0dB 6dB 12dB 18dB
LDA CEP | LDA CEP | LDA CEP | LDA CEP
0dB 82 76 | 16 42 | - - - -
6dB 13 46 | 84 78 | 23 56 - -
12dB - - |22 59 {8 81|45 68
18dB - - - - 48 68 | 87 83
SNR 18dB 24dB 30dB 36dB
ref LDA CEP | LDA CEP | LDA CEP | LDA CEP
18dB (| 87 83 | 68 75 | - - - -
24dB || 71 75 | 88 84 |8 79 | - -
30dB - - [ 8 80 [ 8 84 | 86 83
36dB - - - - 87 83 | 8 84
SNR SNR. test — Lynx noise
ref 0dB 6dB 12dB 18dB
LDA CEP | LDA CEP | LDA CEP | LDA CEP
0dB 83 79 | 67 53 | - - - -
6dB 68 58 | 86 82 (79 68 | — -
12dB - - |8 69 [ 8 84 |8 73
18dB - - - - 84 76 | 88 85
SNR 18dB 24dB 30d4B 36dB
ref LDA CEP | LDA CEP | LDA CEP | LDA CEP
18dB 88 85 (8 79 - - - -
24dB 87 80 | 8 85 [ 88 82 - -
30dB - - | 88 83 |8 85 |8 84
36dB - - - - | 8 84 | 88 85
SNR SNR test — Hair dryer noise
ref 0dB 6dB 12dB 18dB
LDA CEP | LDA CEP | LDA CEP | LDA CEP
0dB 82 75 | 22 43 - - - -
6dB 19 45 | 84 78 | 41 55 - -
12dB - - 42 61 [ 8 81 | 62 68
18dB - - - - | 68 69 | 87 83
SNR 18dB 24dB 30dB 36dB
ref LDA CEP | LDA CEP | LDA CEP | LDA CEP
i8dB || 87 83 | 78 74 | - - - -
24dB 81 74 | 8 84 | 84 78 - -
30dB - - 85 80 | 88 84 | 87 82
36dB - - - - | 87 83 (8 8

Table 1. Phonetic evaluation (%) averaged over all speakers.



SNR SNR test — Gaussian noise

ref 0dB 6dB 12dB 18dB 24dB 30dB 36dB
0dB 88.65 1.89 - - - - -
6dB -1.62  95.09 7.03 - - - -
12dB - 12.28 96.58 44.59 - - -
18dB - - 54.35 96.83 80.57 - -
24dB - - - 91.78 97.35 92.04 -
30dB - - - - 97.06 97.89 97.03
36dB - - - - - 98.55 98.23
SNR SNR test — F16 noise

ref 0dB 6dB 12dB 18dB 24dB 30dB 36dB
0dB 86.99 18.99 - - - - -
6dB 39.78 96.61 77.70 - - - -
12dB - 87.41 96.83 90.72 - - -
18dB - - 97.88 98.18 97.10 - -
24dB - - - 98.11 98.38 97.96 -
30dB - - - - 98.11 98.18 97.84
36dB - - - - - 98.60 98.62
SNR SNR. test — Lynx noise

ref 0dB 6dB 12dB 18dB 24dB 30dB 36dB
0dB 93.66 67.29 - - - - -
6dB 91.67 96.90 89.05 - - - -
12dB - 98.25 98.30 97.66 - - -
18dB - - 98.57 98.60 97.86 - -
24dB - - - 98.55 98.43 98.20 -
30dB - - - - 98.25 98.25 98.36
36dB - - - - - 98.72 98.69
SNR SNR test — Hair dryer noise

ref 0dB 6dB 12dB 18dB 24dB 30dB 36dB
0dB 87.48 2.01 - - - - -
6dB 3.95 93.87 27.55 - - - -
12dB - 42.65 96.38 69.06 - - -
184B - - 81.14 96.44 86.55 - -
24dB - - - 96.49 9789 95.72 -
30dB - - - - 98.23 98.30 98.18
36dB - - - - - 98.50 98.48
SNR SNR test — Bus noise

ref 0dB 6dB 12dB 18dB 24dB 30dB 36dB
0dB 91.31 75.44 - - - - -
6dB 85.26 97.3¢ 93.91 - - - -
12dB - 96.25 97.87 96.86 - - -
18dB - - 98.04 98.62 98.26 - -
24dB - - - 98.60 98.68 98.43 -
30dB - - - - 98.75 98.77 98.77
36dB - - - - - 98.75 98.67
Table 2. Recognition rate (%) averaged over all speakers
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97.4% lower than at 36dB). Higher accuracy leads to higher
sensitivity to variations between training and testing SNR.

We observed that this sensitivity is highly noise dependent.

For white noises (Gaussian and Hair Dryer), LDA space

is very sensitive to SNR variations, especially at low SNRs.

For the other noises tested in our experiments, LDA remains

efficient to small changes around the training SNR.
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