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ABSTRACT

We present a maximum likelihood (ML) stochastic match-

ing approach to decrease the acoustic mismatch between a
test utterance Y and a given set of speech hidden Markov
models Ax so as to reduce the recognition performance
degradation caused by possible distortions in the test ut-
terance. This mismatch may be reduced in two ways: 1)
by an inverse distortion function F,(.) that maps Y into an
utterance X which matches better with the models Ax, and
2) by a model transformation function Gp(.) that maps Ax
to the transformed model Ay which matches better with
the utterance Y. The functional form of the transforma-
tions depends upon our prior knowledge about the mis-
match, and the parameters are estimated along with the
recognized string in a maximum likelihood manner using
the EM algorithm. Experimental results verify the efficacy
of the approach in improving the performance of a continu-
ous speech recognition system in the presence of mismatch
due to different transducers and transmission channels.

1. INTRODUCTION

While progress in automatic speech recognition (ASR) has
been encouraging, it has become increasingly clear that
ASR systems must be robust to changing speaking environ-
ments and speaking styles in order to maintain a reasonable
performance across a wide range of variable acoustic con-
ditions (e.g. [1, 2]). ASR systems trained in one environ-
ment often perform poorly in new environments due to mis-
matches between the training and testing conditions. These
mismatches could be due to different transducers and trans-
mission channels, changing speaking styles and accents, the
presence of varying ambient and channel noise, or modeling
and estimation errors caused by incomplete characterization
of the speech signal and insufficient training data.

In this paper, we present a maximum likelthood (ML)
approach to stochastic matching for robust speech recog-
nition. The speech features are assumed to be modeled
by a set of subword hidden Markov models (HMM) Ax.
Due to the possible mismatch between the test utterance ¥
and the models Ax, there is often a degradation in recog-
nition performance. The mismatch may be reduced in two
ways. First, we may map the distorted features, Y, to an
estimate of the original features, X = F,(Y), so that the
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given models Ax can be used for recognition. Secondly, we
can map the given models, Ax, to the transformed models,
Ay = Gp(Ax), which better match the observed utterance
Y. The first mapping operates in the feature space, whereas
the second operates in the model space. We present an ap-
proach in which the functional form of these mappings is
assumed. The unknown parameters, v or 7, are iteratively
estimated, using the expectation-maximization {EM) algo-
rithm [3], so as to maximize the likelihood of the observed
speech Y given the models Ax, thus decreasing the mis-
match due to the distortion. The estimation of v or 5 re-
quires only the test utterance Y, and the models, Ax, and
does not make use of any training data.

In other related work on speaker adaptation [4, 5], a fixed
bias is estimated that transforms each individual speaker
to a reference speaker and then the estimated bias is sub-
tracted from every frame of speech. A similar approach has
been used for estimating channel mismatch in speech recog-
nition {2, 6] where the speech is modeled by a vector quan-
tization (VQ) codebook. More recently, an approach for
speaker adaptation has been presented where the mismatch
is modeled by an affine transformation, and the parameters
of the transformation are estimated separately for different
clusters of Gaussian densities {7, 8]. In all the above ap-
proaches, the mismatch is treated as a deterministic feature
transformation, whereas in the stochastic matching algo-
rithm, we view the mismatch in both the feature and model
spaces. As mentioned above, the method makes use only of
the test data and the stored HMMs. This is in contrast to
some approaches that make use of a stereo database from
the mismatched environments before processing as in [2, 9].

2. GENERAL FRAMEWORK

We are interested in the following problem. Given a set of
trained HMMs A x, where the subscript X denotes the fact
that the models are based on a given set of training data
{X}, and a test utterance Y = {y,,9,, ', yr}, we want
to recognize the sequence of words W = {Wy, W,,-.. , W}
embedded in Y. If there exists a mismatch between the
training data {X}, and the test utterance Y, then this re-
sults in errors in the recognized word sequence W. We are
interested in reducing this mismatch and hence improving
the recognition performance.

The mismatch may be viewed either in the feature-
space or in the model space [11, 12]. In the feature-
space, let the distortion function map the original utter-
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ance X = {z1,z2,---,z7} into the sequence of observations
Y = {y,, 95, ++,yp}. If this distortion is invertible, then we
may map Y back to the original speech X with an inverse
function F,, so that

X = F.(Y), (1)
where v are the parameters of the inverse distortion func-
tion. Alternately, in the model-space consider the trans-
formation G, with parameters n that maps Ax into the
transformed models Ay so that

Ay = Gy(Ax). (2)
One approach to decreasing the mismatch between Y and
Ax is to find the parameters v or 5, and the word sequence
W that maximize the joint likelihood p(Y, W|Ax,). Thus,
in the feature-space, we need to find »' such that

(¢v',W') = argmax p(Y, W|r, Ax), (3)
(":W)
and in the model space we need to find 7' such that
(WI:W') = 3rgm“P(YaW|U, Ax). (4)

(mW)

This joint maximization over the variables v and W in
Equation 3 or over 7 and W in Equation 4 may be done
iteratively by keeping » or n fixed and maximizing over W,
and then keeping W fixed and maximizing over v or 5. The
process of finding W is just the usual continuous speech de-
coding problem and has been studied by many researchers.
In this paper, we are interested in the problem of finding
the parameters v and 5. To simplify expressions, we remove
the dependence on W, and write the maximum likelihood
estimation problem corresponding to Equations 3 and 4 as

©)

v' = argmax p(Y|v, Ax),
v

and

(6)

For this study, we assume that Ax is a set of left to right
continuous density subword HMMs [13]. The observation
density pg(z|i) for state ¢ is assumed to be a mixture of
Gaussians, given by

n' = argmax p(Y|n, Ax).
n

M
pz(zli) = z w; j N(z; p; 5, Ci5),

ij=1

(7

where M is the number of mixtures, w;,; is the probability
of mixture j in state iz, and N is the normal distribution.
Ci,; and p, ; are the covariance matrix and mean vector
corresponding to mixture j in state 3.

Let S = {s1,82,---,37} be the set of all possible state
sequences for the set of models Ax and C = {c1,¢2,---,cr}
be the set of all mixture component sequences. Then Equa-
tion 5 can be written as

v = argma.xZZp(Y,S, Clv, Ax). (8)
v s ¢
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Similarly, we may write Equation 6 as
n = argmaxZZp(Y, S, Cln, Ax). (9)
n

s C

In general, it is not easy to estimate v’ or 5’ directly.
However, for some F, and G,, we can use the EM algo-
rithm [3] to iteratively improve on a current estimate and
obtain a new estimate such that the likelihoods in Equa-
tions 8 and 9 increase at each iteration. In the next two
sections, we discuss the application of the EM algorithm to
find the estimates of the parameters v of the feature-space
transformation F,, and the parameters 7 of the model-space
transformation Gy, respectively.

FEATURE SPACE MATCHING

In this section we use the EM algorithm to find the esti-
mates v’ of Equation 8. The EM algorithm is a two-step
iterative procedure. In the first step, called the expectation
step (E step), we compute the auxiliary function given by

3.

QW'|lv)=E (log p(Z|V)|Y, V) , (10)
where Y is the incomplete observed data, and Z is the com-
plete data [3]. Different choices of Z lead to different EM al-
gorithms. Under the choice of complete data Z = {Y, 5,C},
the auxiliary function is

Q(V'IV) = E{logp(Y,S,CIV',Ax)|Y, v,Ax}, (11)

which can be re-written as

QU'Iv) = _p(Y,S,Clv, Ax)log p(Y, S, Clv', Ax). (12)

5,C

In the second step, called the maximization step (M step),
we find the value of ¥’ that maximizes Q(v'|v), i.e.

(13)

v' = argmax Q(v'|v)
Vl

It can be shown [3] that if Q(¥'|v) > Q(v|v) then
p(Y]e',Ax) > p(Y|v,Ax). Thus iteratively applying the
E and M steps of Equations 10 and 13 guarantees that the
likelihood is nondecreasing. The iterations are continued
until the increase in the likelihood is less than some prede-
termined threshold.

In general, the function F,(.) of Equation 1 can map a
block of Y into a block of X of different size. However,
for simplicity, we assume that the function is such that it
maps each frame of Y onto the corresponding frame of X, so
that z: = fu(y,). We further assume that f,(y,) operates
separately on each component, i.e., z¢i = fu,i(y:,), and
that the covariance matrices Cy,m are diagonal, i.e., Chm =
dia.g(o'?.,m). In what follows, for ease of the expressions,
we drop the reference to the subscript ¢ denoting the ith
component of the vectors. We consider functions of the
form

fulye) = agly:) + b, (14)



where g(y:) is a known (possibly non-linear) differentiable
function of y¢, and v = {a, b} is the set of unknown param-
eters. The auxiliary function of Equation 12 can now be
written as [10, 12]

T,N.M
! ! —
Q@ ¥lab) = Y m(nm) X
t,nm
1 L 2
[_%(a 8(y:) j%bm fnm) +loga'],(15)

where v:(n,m) is the joint likelihood of observing Y and
the mth mixture component of the nth state producing the
observation y, given the current estimate of the parame-
ters a and b. v:(n, m) can be computed using the forward-
backward algorithm (e.g. [10}). In order to compute the
parameters that maximize the auxiliary function, we take
the derivative of Equation 15 with respect to a’ and b’ re-
spectively and set them to zero, getting

Tg,:M Aﬂ(n’ m) I:% _ (a’g(yt) + 1:7,2— “n.m) g(yt)] =0,
dt'n’m (16)
T,N,M

Z Ye(n, m) [(a'g(y,) +b = un,m) /Ui,m] =0. (17)

We can solve equation 16 and 17 explicitly for the estimates
a’ and b'.

In particular, consider an additive bias distortion y,
z; + b;. This results by setting each component g(y:) = ye,
and a = 1, in the above functional form. Thus a is known
and only the parameter b has to be estimated. The iterative
estimation formula for the ith component of a fixed bias b
for a speech segment can be shown to be

. DM e, mY (Yt — B i ) 0% i
b; = TN, M . (18)
e Ye(mam)[0d
4, MATCHING IN THE MODEL SPACE

In this section, we consider the case of probabilistic distor-
tion functions which corresponds to viewing the problem
in the model space. We estimate the parameters 7 of the
model transformation Ay = Gy(Ax) by maximizing the
likelihood p(Y|W,7n,Ax). In particular, consider the case
of a random additive bias sequence B = {b1,---,br}. For
simplicity, we assume that b, is independent of the speech,
and isi.i.d. Gaussian with mean p, and diagonal covariance
diag(o}), and Ap = {#y,02}. Under these conditions, Ay
is obtained by adding the mean g, and the variance o to
the means and variances of each mixture component of A x.
i, can be estimated as in Equation 18, except that cr?,’,,,’,- is
replaced by a'f,,m,i + aﬁ,,—. However, to obtain a closed form
expression for o2, we need to derive a new EM algorithm by
considering the complete data Z = (X, B, S, C) where the
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Table 1. Word Error Rate (%) Comparisons
[ [ MIS [ FS1 | FS2 [ MS2 ]| MAT | MS1 |

A-MIC |i 14.1 | 4.7 4.6 4.1 2.1 2.2
A-TEL || 24.3 | 146 | 10.7 | 7.1 2.7 2.5
B-MIC || 25.8 | 7.7 7.4 6.3 6.3 5.5
B-TEL || 24.1 | 13.7 { 10.8 | T4 7.0 6.5

observed incomplete data is given by Y = X + B [14. 12].
a2 is now estimated by

2/ tT:’,:r,Y,,M 73("'7 m)E (b?,ilyf,ixn’ m)AXyAB) ;2
Obi = TNM — Hbji -
T ()

(19)
E (b'f,,-|yt,,‘, n,m,Ax, AB) is the conditional expected value
of bf’,- given the ¢th observation y:; and that this obser-
vation is generated from the mth mixture component of
the nth state. This conditional expectation is easily evalu-
ated from our knowledge of Ax and the current estimate of
Ap = {V'by Ug}

5. EXPERIMENTAL RESULTS

We tested the proposed approach on the 991-word DARPA
resource management (RM) task using the RM word-pair
grammar with a perplexity of 60. New simultaneous record-
ings of two non-native speakers were collected through two
channels: 1) a close-talking microphone (MIC), and 2) a
telephone handset over a dial-up line (TEL). The problem of
speaker mismatch is not dealt with here. Therefore speaker
adaptive models for 1769 context dependent units were cre-
ated with 300 adaptation sentences and a set of speaker
independent seed models using a MAP algorithm [15]. The
test set consisted of an additional 75 utterances for each
speaker (A and B) and each channel (MIC and TEL).

For this problem, we assume that the mismatch between
the recordings can be modeled as an additive bias b; in the
cepstral observation domain. A fixed additive bias model
in the feature space has previously been used for speaker
adaptation [4]. In our approach, however, the bias may be
viewed in the feature space or the model space. The bias
parameters may also be estimated separately for different
signal segments. For example, when part of the mismatch
is due to noise, the additive bias model for channel mis-
match is inaccurate, especially in regions of the utterance
where the noise dominates. We are thus motivated to ex-
periment with separate bias parameters for speech and si-
lence frames, both in the signal and model space. In our
experiments, the bias estimation was performed on a per-
utterance basis. Table 1 gives the percentage word-error
rates for speaker A and B for test data recorded using ei-
ther MIC or TEL channels under mismatched conditions
(MIS), and after processing with three sets of bias estima-
tion approaches, namely: 1) a single bias in feature space
(FS1); 2) a separate speech and silence bias in feature space
(FS2); and 3) a separate speech and silence random bias in
model space (MS2). The table also shows the word-error
rates in matched conditions with 1) no processing (MAT),
and 2) stochastic matching by estimating a single random
bias in the model space (MS1).



Table 2. Word Error Rate (%) After CMS Processing
| [ MIS | FS1 | FS2 | MS2 | MAT | MS1 |

A-MIC 5.0 5.2 3.7 3.7 3.0 3.1
A-TEL |[ 12.0 | 12.6 | 8.3 6.1 3.1 3.1
B-MIC 9.9 9.7 8.4 7.9 5.0 5.3
B-TEL 8.9 9.1 7.0 7.7 6.3 5.0

We see that the proposed stochastic matching algorithm
consistently reduces the word-error rate by about 70% for
all the speaker/channel combinations (see MS2 results in
the table). It is seen that estimating separate speech and
silence feature-space bias parameters (FS2) is superior to
single parameter estimates {FS1). This is also true for the
model-space estimates [12]. Furthermore, the table also
shows that model space parameter estimation gives bet-
ter performance than feature space estimation. For speaker
B, the performance approaches that of the matched con-
ditions. In addition, the proposed approach maintains the
performance even in matched conditions (see the last two
columns of Table 1).

We also compared the stochastic matching approach with
the popular cepstral mean subtraction (CMS) approach
where the average cepstrum over the entire utterance is sub-
tracted from each frame. Table 2 gives the results for the
different stochastic matching approaches of Table 1, except
that now the training and testing utterances are first pro-
cessed by CMS.

Comparisons between the single feature space bias esti-
mate (FS1 in Table 1) and CMS (MIS in Table 2) do not
clearly show the superiority of one over the other. How-
ever, the CMS results (MIS column in Table 2) were not
as good compared to the stochastic matching algorithm re-
sults shown in Table 1 for the cases of two feature space bias
estimates (FS2) and the model space approaches (MS2).

The stochastic matching algorithm can also be applied af-
ter CMS processing as shown in Table 2. It can be seen that
a single feature space bias estimate (FS1) results in similar
performance to the mismatched case (MIS). This is not sur-
prising, as the CMS processing has caused both the training
and testing utterances to be zero mean. However, a sepa-
rate speech and silence bias vector estimate (FS2) results
in an additional performance improvement. Furthermore,
the results show that the model space bias parameter esti-
mation procedures (MS2) also decrease the word error rate.
When compared with the model space approaches without
CMS processing (Table 1), there is no clear improvement
shown in the MS2 results listed in Table 2. Finally, under
matched conditions (the last two columns of Table 2), we
see that the stochastic matching algorithm maintains the
performance well.

6. SUMMARY

We have presented a maximum likelihood stochastic match-
ing approach to decrease the acoustic mismatch between a
test utterance and a given set of speech HMMs so as to
reduce the recognition performance degradation caused by
possible distortions in the test utterance. In contrast to
most approaches that use stereo data to estimate the mis-
match model before recognition, the stochastic matching
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approach estimates the mismatch and performs recognition
at the same time using the proposed EM algorithm. We
found the approach mathematically attractive and gave im-
proved recognition performance in mismatch training and
testing conditions while maintaining recognition accuracy if
training and testing conditions are acoustically similar.
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