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ABSTRACT

The problems of Limited-domain Spoken Language
Translation and Understanding are considered. A stan-
dard Continuous Speech Recognizer is extended for
using automatically learnt finite-state transducers as
translation models. Understanding is considered as a
particular case of translation where the target language
is a formal language. From the different approaches
compared, the best results are obtained with a fully in-
tegrated approach, in which the input language acous-
tic and lexical models, and (N-gram) Language Models
of input and output languages, are embedded into the
learnt transducers. Optimal search through this global
network obtains the best translation for a given input
acoustic signal.

1. INTRODUCTION

As speech processing techniques become increasingly
able to cope with many real-world Continuous-Speech
Recognition (CSR) applications, more ambitious tar-
gets are being considered, such as speech-input Lan-
guage Translation and Understanding (LT and LU).
Both problems can be uniformly formulated if we as-
sume that the ultimate goal of a LU system is to drive
the actions associated to the meaning-conveyed by the
sentences issued by the users. In this case, the under-
standing problem simply becomes one of translating
the natural language sentences into formal sentences
of an adequate (computer) command language. For
example, “understanding” natural language (spoken)
queries to a database can be seen as translating these
queries into an appropriate computer-language code to
access the database. Clearly, under such an assump-
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tion, LU can be seen as a (possibly simpler) case of
LT in which the output language is formal rather than
natural [1].

Most of the current efforts to cope with these prob-
lems are based on the use of previously developed tezt-
input LT or LU systems relying on knowledge-based
technology, which are serially coupled to the output of
state-of-the-art word recognizer front-ends [2, 3, 4, 5].
Such a procedure is quite sensitive to front-end errors,
since it does not exploit the powerful intrinsic restric-
tions that underly the output language syntax and the
translation rules, to conveniently guide the search at
the (input) acoustic and lexical levels. A possibly bet-
ter approach would be trying to solve the LT and LU
problems under a framework closer to the standard as-
sumptions under which successful speech front-ends are
developed. This means devising adequate models for
LT and LU which: i) can be automatically learnt from
training data for each task considered; and ii) can be
combined with the input-language acoustic and lexi-
cal models into an appropriate integrated network, in
which an optimal search to find the best output can be
performed [1].

In this paper we describe how these goals can be
achieved for limited-domain applications, and present
comparative experimental results.

2. OVERVIEW OF THE RECOGNITION
AND TRANSLATION SYSTEM

The purpose of a CSR system is to translate an acoustic
signal into the word sequence uttered by the speaker.
Current CSR systems use different knowledge sources
modeling the successive mappings from the acoustic
signal into phonemes, words and syntactically-correct
sentences.

It is well known that when enough computational
resources are available, the best strategy is to embed all
these knowledge sources into an integrated model, and
perform an optimal search for the best syntactically-
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correct word sequence given the acoustic signal. In
this way, the restrictions imposed by the higher-level
models allow for limiting the search space at the lower
levels. This can be accomplished easily if (stochastic)
finite-state models are chosen. The resulting integrated
model is a graph through which an optimal path can
be found by Dynamic Programming.

In Spoken LT (and, in particular, LU in the sense
mentioned above), an additional mapping is required,
from the word sequence uttered by the speaker into
a sentence of a different language. If this mapping
can be described by a finite-state model (which is of-
ten the case in limited-domain applications), the same
techniques used to develop CSR systems can be ap-
plied. For this reason we chosed to work with subse-
quential transducers (SSTs), which have the additional
advantage of being automatically learnable from train-
ing data [6].

A fully trainable Speech Translation and Under-
standing System has been developed [7]. This system
is based on conventional Viterbi beam search through
a network wich embeds phonetic, lexical and trans-
lation stochastic finite-state models. Phonetic mod-
els are discrete Hidden Markov Models. Lexical mod-
els describe words in terms of valid concatenations of
phonemes. Translation models are SSTs, possibly em-
bedding stochastic (finite-state) language models de-
scribing sentences in terms of possible concatenations
of words.

In order to perform speech-input LT (and LU), two
different approaches, hereafter referred to as decoupled
and integrated, have been implemented and compared.

In the decoupled approach, a front-end speech rec-
ognizer is used, which is guided by phonetic, lexical and
syntactic models of the input language. Translation is
performed with text-to-text SSTs.

In the integrated approach, syntactic models of the
input and/or output languages are used during the
training of the SSTs, in order to obtain translation
models compatible with the corresponding syntactic re-
strictions. During the recognition phase, these trans-
lation models are directly embedded with the phonetic
and lexical models of the input language, in order to
perform a global search for the optimal translation
given the acoustic signal.

Among the different system components, probably
the least known are the subsequential transducers. The
next section is devoted to give an outline as well as
appropriate references where more details can be found.
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3. SUBSEQUENTIAL TRANSDUCER
LEARNING

A subsequential transducer is a deterministic finite-
state network that accepts sentences from a given input
language and produces associated sentences of an out-
put language. There is an input symbol and an output
substring associated to each edge of a SST. Each state
may also have associated an output substring. One of
the states is the initial state and all the states are final.
An input string is accepted if its sequence of symbols
matches the associated input symbols of a sequence of
edges. Simultaneously, an output string is produced
which consists of the concatenation of the output sub-
strings associated to the edges and to the last state
used to accept s [8].

Given a set of training sentences from an unknown
translation task, the Onward Subsequential Transducer
Inference Algorithm (OSTIA) efficiently learns a SST
that generalizes the training set [6]. Moreover, if the
unknown target translation can be assumed to exhibit
a subsequential structure, convergence to this trans-
lation is guaranteed if the set of training samples is
“representative” or, simply, large enough [6].

This algorithm tends to generalize as much as pos-
sible while not contradicting the training data. While
this has no negative effect if new correct (text) input
sentences are submitted to translation, the results can
be very bad if erroneous input data is used [7, 9]. This
particularly applies to translation of input speech a task
were the robustness of the transducer is specially im-
portant: it should be able to produce approximately-
correct translations for approximately well-recognized
sentences.

A recently introduced extended version “of
OSTIA [9] uses syntactic restrictions of the input
and/or output languages, expressed by finite-state
models, to constrain possible over-generalizations from
the training data. It produces a subsequential trans-
ducer that only accepts input sentences and only pro-
duces output sentences compatible with input and/or
output models. In addition, text-to-text experimen-
tal results have shown that the new version produces
highly accurate transducers using less training sam-
ples [9].

4. EXPERIMENTAL COMPARISON

4.1. Visual Scenes Description Task

The system has been tested with a pseudo-natural task
recently proposed by Feldman et al [10]. This task con-
sists of describing simple two-dimensional visual scenes
which involve a few geometric objects with different



Spanish: se anade un circulo grande y oscuro muy por encima del cuadrado pequefo y oscuro y del triangulo claro
English: a large dark circle is added far above the small dark square and the light triangle

German: man hat einen grossen dunklen Kreis weit uber dem kieinen dunklen Viereck und dem weissen Dreieck hinzugefigt
Semantic:  La(x) & D(x) & C(x) & Sm(z) & D(z) & S(z) & Li(w) & T(w) & FA(x;z) & FA(x;w) & Ad(x)

Figure 1: An example of translations of a Spanish sentence of the experimental task.

shape, shade and size, and located in different relative
positions. The original language of this task was ex-
tended to cover the possibility of adding or removing
objects to or from a scene, and the task was adapted
for LT and LU experimentation {11, 12]. In the present
work, Spanish has been chosen as the input language;
the output can be English or German for LT, or a se-
mantic description of the scene in terms of first-order
logic formulae for LU. Examples of these input and
output sentences are shown in Figure 1.

4.2. Training the acoustic, syntactic and trans-
lation models

For the experimental results reported below, phonetic
models consist of 26 context-independent discrete Hid-
den Markov Models with 3 states and 128 codewords.
They were trained using a small corpus of 120 sen-
tences (from a different task) uttered by 10 speak-
ers. Lexical models describing Spanish words (a total
number of 29) consist of simple phoneme concatena-
tions. The syntactic restrictions of the input and/or
output languages have been modelized using stochas-
tic k-Testable Automate (k-TA), which are equivalent
to k-Grams [13, 14, 15, 16].

A set of 50100 input/output paired (text) sentences
(for each of the 3 different output languages) was ob-
tained using a semi-automatic procedure [11]. From
this set, 100 input/output sentences were randomly
selected for speech-input testing purposes. The re-
maining 50000 pairs were used to automatically learn
different k-TA (k = 2,3,4) for the input and output
languages as well as different subsequential transduc-
ers. For the decoupled approach SSTs where learnt
with the original OSTIA (without input or output syn-
tactic restrictions). For the integrated approach SSTs
were learnt with the extended OSTIA using the input
and/or output k-TA, and a stochastic extension of the
transducers was carried out by estimating the transi-
tion probabilities from their frequencies of use for pro-
cessing the sentences in the training-set.

4.3. Recognition and Translation Results

From the randomly selected test-set of 100 in-
put/output pairs, each Spanish test sentence has been
uttered by 4 speakers (one of them also participated
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in the training of the HMMs). The system outlined
above has been used to analyze these utterances, using
the same beam search thresholds in all the experiments.

Figure 2 presents the recognition and translation
word error rates (including insertion, substitution and
deletion errors), averaged over the 4 speakers. An im-
provement of the results is observed as more syntactic
constraints are integrated in the learnt transducers.

In the case of integrated transducers, only the
output-language translation is directly available. How-
ever, a corresponding input-language sentence can be
easyly obtained as a by-product; this enables to mea-
sure a “recognition error rate” in this case. It is worth
noting that these recognition results (rows ii and iii) are
significantly better than those achieved using the corre-
sponding k-TA of the input language in the decoupled
way (row i). This means that the (input parts of the)
transducers learnt using these k-TAs offer better mod-
eling of the input language than the k-TAs themselves.

Clearly, the use of more powerful acoustic models
would improve both the recognition and the translation
rates. However, results in row (i) reflect the fact that
the original transducers (without models of the input or
output languages) obtain relatively meaningless trans-
lations for incorrectly recognized sentences. Rows (ii)
and (iii) show how this undesirable behaviour improves
dramatically when integrated models are used.

The size (number of arcs) of the integrated SSTs
was typically up to 5 times the size of the corresponding
k-TAs in the case of Spanish-to-English and Spanish-
to-German models, and up to 30 times the size of
the corresponding k-TAs in the case of Spanish-to-
Semantics models. This is due to a larger semantic vo-
cabulary as well as to the higher degree of “asynchrony”
in the Spanish-to-Semantic translation. The semantic
representation was specifically chosen for studying this
effect. For instance, in Figure 1 the Spanish segment
“se aniade” corresponds to “Ad(z)” which appears at
the very end of the semantic representation. In spite of
this increment in size, Viterbi beam search recognition
and translation time was always lower using the inte-
grated transducers, and never greater than 0.4 times
real-time in a HP-9000/735 workstation.
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(a) Spanish-English models

(b) Spanish-German models

(c) Spanish-Semantics models

Figure 2: Results with speech input: (i) Decoupled scheme: recognition guided by the k-TA of the input language, and translation
performed with the transducers learnt by the original OSTIA; (ii) Integrated scheme: recognition and translation guided by the
transducers learnt by the extended OSTIA using the k-TA of the input language only; (iii) Integrated scheme: recognition and
translation guided by the transducers learnt by the extended OSTIA using both the k-TA of the input and output languages.

5. CONCLUDING REMARKS

Automatic translation (or understanding) of unre-
stricted spontaneous speech is far from being satisfac-
torily solved. However, many applications of interest
can be limited to a small or medium-sized vocabulary,
and have a restricted semantic domain. For these kind
of tasks, it is actually feasible to achieve a finite-state
modeling not only of the syntactic constraints of the
languages involved, but also of the required transla-
tion mapping itself. Moreover, since all the models can
be automatically learnt from training data, for such
a kind of tasks Speech Translation and Understanding
Systems can now be built with a low development cost.

Clearly, the bottleneck of this approach lies in the
availability of large corpora of paired sentences of dif-
ferent languages. It is likely that these resources will
be available in the very near future, in the same way
as corpora for training acoustic and language models
exist today. An interesting feature of OSTIA is that
the training sentences do not need to be aligned at any
sub-sentence level. The algorithm implicitly learns the
best possible alignments.
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