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ABSTRACT

Speech recognition of conversational speech is a difficult task.
The performance levels on the Switchboard corpus had been in
the vicinity of 70% word error rate. In this paper, we describe
the results of applying a variety of modifications to our speech
recognition system and we show their impact on improving the
performance on conversational speech. These modifications in-
clude the use of more complex models, trigram language models,
and cross-word triphone models. We also show the effect of us-
ing additional acoustic training on the recognition performance.
Finally, we present an approach to dealing with the abundance of
short words, and examine how the variable speaking rate found in
conversational speech impacts on the performance. Currently, the
level of performance is at the vicinity of 50% error, a significant
improvement over recent levels.

1. INTRODUCTION

We have previously presented approaches on word spotting and
topic identification tasks using the Switchboard corpus [2, 3].
Both approaches made use of large vocabulary speech recogni-
tion systems. The word error rate at which these systems operated
was in the vicinity of 70%. Such poor performance could be
partially explained by the difficulty of the task: conversational
speech is typically unstructured, and includes frequent pauses,
pause fillers, non-speech events, repeats, restarts, and other ar-
tifacts. In this paper, we address the issue of recognizing this
conversational speech and describe how we are able to signifi-
carnitly reduce the word error rate. In the discussions, we try to
provide some insights on the various problems that arise from rec-
ognizing conversational speech, as compared to read or prompted
speech, and try to quantify their impact on the word error rate.
An in depth analysis of understanding and improving recognition
performance can be found in [1].

The approach we have taken is to first consider continuous
speech recognition (CSR) techniques that have been shown to
improve the performance on read speech such as the Wall Street
Journal (WSJ) task. These techniques include the use of more
complex models, as well as additional training for both acous-
tic and language models. We also investigated the use of read
speech to train the acoustic models. In combination with these
techniques, we started to look specifically at ways of reducing the
word error rate on spontaneous speech. In particular, we present
a word-pairing approach that reduces the effect of frequent short
words and examine the effect of the speaking rate on the word
error rate. '

The paper is organized as follows. In Section 2, we describe the
Switchboard corpus and compare it with a corpus of read speech.
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Next, in Section 3, we describe the experimental paradigm. Then
we present a variety of experimental results in Section 4. Finally,
we conclude with a discussion of the various results in Section 5.

2. THE CORPUS

Switchboard is a large corpus of conversations recorded over the
telephone, in which the two speakers are asked to discuss one of
70 different topics such as pets, crime, or air pollution. There is a
total of 2300 conversations (or 4600 sides) with each conversation
averaging five minutes in duration.

Segmentation. Because the conversations are typically five
minutes, we had to break up the conversation into smaller
sentence-sized units for processing. Each side from a Switch-
board conversation was segmented automatically at turns and
pauses using the time markings that originally came with the data
to create these “sentences.” Because the time markings are not
completely accurate, we estimate that approximately half of the
sentences contained small errors at the boundaries (word missing,
inserted, or cut-off). Another result of the segmentation algo-
rithm is that a large fraction of these sentences are really partial
sentences that are probably harder to recognize than complete
sentences, at least from a language modeling point of view.

Training and Test. The entire corpus was partitioned into a
training and testing set. The test set was drawn from ten different
topics, with an even balance of male and female speakers. All
other sides that included these test speakers were taken out from
the training. Finally, the test set was cleaned by correcting the
transcriptions and adjusting the boundaries to include some si-
lence on both ends. Statistics for the two data sets are described
in Table 1.

# sides | # spkrs [ hours | # sent. | # words
TRN | 3097 382 1432 | 200 K 2M
TST 20 20 0.5 524 6724

Table 1. Description of training and test set used: Total number
of different sides, number of unique speakers, total duration in
hours, total number of sentences, and total number of words.

Comparison with Read Speech. In order to characterize the
differences between conversational speech and read speech, we
compare some statistics computed from the Switchboard data
to those computed from the Wall Street Journal (WSJ0) data.
These statistics, presented in Table 2, are: Percent coverage with
200 words, percentage of function words, and average length of
the words (in phonemes). The main observation is that function
words are much more frequent in the conversational data, which
translates into a higher coverage with 200 words, and shorter
words on average since function words are typically short.
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% cov. with function | avg length

200 words words (%) words
SWB 75 60 3.0
WwSJO 60 38 4.1

Table 2. Weighted coverage with the 200 most frequent words,
percentage of function words (from a list of 245 words) in the
test sets, and average word length for Switchboard and WSJO.

3. BASELINE SYSTEM

We used for these experiments BBN’s Continuous Speech Recog-
nition System [6], Byblos, which is a semi-continuous, tied mix-
ture system. In this system, context-dependent phonemes are
modeled with 5-state, left-to-right HMMs. A set of 52 phonemes
is used, including 7 special symbols dedicated to non-speech
events such as laughter or breathing noise. A forced alignment
pass was used to reject the sentences with errorful transcriptions.
The features used are 45 mel-cepstra per 10ms frame, including
first and second derivatives. During the training process, context
independent units are first trained from flat estimates; the result-
ing context independent models are then used to bootstrap the
training of the context dependent units.

The decoder is a multi-pass system where the last pass uses
a lattice word graph that can be expanded to include trigram
weights and cross-word models. The final output is a word-
dependent N-best list of hypotheses that can be rescored using
additional knowledge sources.

3.1. Lexicon and Language Model

In order to pick the lexicon, we measured the unweighted and
weighted coverage using the 2k, 5k, 10k and 22k most common
words in the training set. Based on the numbers reported in Ta-
ble 3, we decided that the Sk lexicon seemed like a reasonable
trade-off between coverage and system complexity. We did, how-
ever, “close” the lexicon by adding the words missing from the
test to facilitate the interpretation of the results.

2k Sk 10k 22k
unweighted cov. | 52.8% | 75.2% | 87.4% | 94.6%
weighted cov. | 93.0% [ 96.7% | 98.3% | 99.3%

Table 3. Weighted and unweighted coverage using the 2k, 5k,
10k and 22k most common words in training.

For language modeling training, we considered two sets of
transcriptions. In the first set, only the 40,000 sentences from the
same 10 topics as the test set were used. The second set included
the sentences from all 70 topics for a total of 200,000 sentences.
We measured the 2-gram and 3-gram perplexity on the test set
using each training set and compared it with the perplexity of
the WSJO task. The results are presented in Table 4. We notice
first that even though the additional training transcriptions do not
come from the same topics as the test, the 70-topic language
model results in lower perplexities than the 10-topic grammar.
Another observation is that the 3-gram perplexity is worse than
the 2-gram perplexity with the 10-topic set, and marginally better
with the 70-topic set. This seems to indicate that we are proba-
bly experiencing a lack of training, even with 2 million words.
But the bottom line is that the perplexity numbers are fairly high
compared to the WSJ task perplexity, thus indicating that the tran-
scription task on Switchboard is a hard problem from a language
modeling point of view.
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Grammar | Training | Training | 2-gram | 3-gram
(# sent) | (# words) perp. perp.
10 topic 40 k 0.4 M 136 138
70 topic 200 k 2M 128 122
WSJO 2M 35SM 110 77

Table 4. Number of sentences, number of words, 2-gram and
3-gram perplexity for the 10-topic and 70-topic training data,
compared to WSJO 5k.

4. EXPERIMENTAL RESULTS

We describe in this section experimental results on the test set.
First, we concentrate on improving the acoustic modeling by us-
ing more complex models, additional acoustic training, and read
speech data from a different corpus. Next, we try to address,
more specifically, the conversational nature of the speech. We
examine the problem of frequently occurring short words and the
impact of the speaking rate on the performance.

4.1. Improving the Acoustic Model

We describe in this section how we are able to reduce the word
error rate by using more complex acoustic models and increasing
the amount of acoustic training. For all these experiments, we
used the 70-topic language model. As a reference, the original
large vocabulary speech recognition system [2, 3] used 3-state,
gender-dependent models for each context-dependent phoneme,
and the input feature vector consisted of cepstra and their first
derivatives. The word error rate for this system was in the vicinity
of 70%.

Using our baseline system described above, with 4.5 hours
of acoustic training, first (D) and second difference (DD) cep-
stra, and S-state HMM models, we achieve a word error rate of
67.5%. As we include cross-word triphone models and a tri-
gram language model, the word error rate is further reduced to
61.9%. This indicates that word accuracy improves consistently
as the complexity of the models increases. We then increase the
amount of acoustic training to include, first, 32.2 hours and then
the full 143.2 hours. At this point, the word error rate reaches
53.1%. In Figure 1, we show the change in word error rate as
the amount of acoustic training data is increased. We notice that
below 30 hours, the decrease in word error rate is around 2% for
each doubling of the data. Above 30 hours, the decrease levels
off slightly to only 1% for each doubling of the data. Finally,
our best run (50.5%) is achieved by reducing the pruning lev-
els and using improved crossword models. All these results are
summarized in Table 5 and Figure 1.

acoustic
systems training | word error

(hours) rate (%)
5-state, D+DD, 2-gram 4.5 67.5
5-state, D+DD, xword, 3-gram 45 61.9
5-state, D+DD, xword, 3-gram 322 55.1
5-state, D+DD, xword, 3-gram 1432 53.1
5-state, D+DD, xword, 3-gram, imp. 143.2 50.5

Table 5. Word error rate and amount of acoustic training used
for systems with different model complexity.
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Figure 1. Word Error Rate as a function of the amount of acoustic
training (hours) for 3 systems: 2-gram, non crossword models
(0); 3-gram, crossword models (x); 3-gram, crossword models
with improved search and modeling (A).

4.1.1. Using Read Data

One major concern was the possibility that the Switchboard
acoustic data was not suitable for training due to its poor quality
(see Section 2.). We. believed that this was particularly an issue
since we train our phoneme models from flat initial estimates.
This motivated us to examine the use of an alternate corpus to
train the acoustic models. We chose Macrophone [5] which is
a large corpus of read and prompted speech recorded over the
telephone. Each speaker was asked to record sentences from 15
different types. For our experiment, we used sentences from the
TIMIT, WSJ and ATIS types, which amounted to a total of 27
hours of speech. For the first experiment, we trained the acoustic
models using only the 27 hours of Macrophone data. The word
error rate measured on the standard test set, with the standard lan-
guage model, was 66.7%. This is significantly worse than 61.9%,
the word error rate achieved with only 4.5 hours of Switchboard
training. Further analysis shows that the triphone coverage on the
test set using the Macrophone training is actually worse that the
triphone coverage using the 4.5 hours of Switchboard. This is not
surprising given that the Macrophone data comes from an entirely
different domain than the test data. Compounded to this is the
fact that the speaking styles are different. We hoped that these
deficiencies would be compensated by the quality of the data.
This, however, does not seem to be the case. This observation
is confirmed in our second experiment where the Macrophone
training was used only during the initial training phase, to gener-
ate the context-independent units from the flat estimates. In this
case, the context-dependent units were trained using the 4.5 hours
from Switchboard. The word error rate was 62.2%, almost un-
changed from the error rate achieved using only the Switchboard
data. These results are summarized in Table 6.
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description 1nit training | word error
(hours) rate (%)
SWB Sw 45 61.9
MAC MAC 27 66.7
MAC,SWB | MAC 45 62.2

Table 6. Word error rate using only Switchboard training,
only Macrophone training, and Switchboard training bootstrapped
from Macrophone.

4.2. Modeling Conversational Speech

Even though we were able to significantly reduce the word er-
ror rate with additional training and more complex models, the
performance achieved on the Switchboard test set is still out of
line with standard results on read speech. This difference cannot
be completely explained by the high perplexity of the task or
the quality of the data (recordings over the phone); we still need
to model the conversational nature of the data better. Based on
the analysis presented in [1], we identified two major areas to
address. The first is the frequent use of short non-content words
that are by nature more difficult to recognize. and the second is
the speaking rate.

4.2.1. Short Words

We observed in Section 2 that one major difference between
conversational (Switchboard) and read (WSJ) speech is the aver-
age length of the words. When we try to characterize the com-
plexity of a task, we usually report perplexity, which is measured
at the word level. The perplexity P is measured as:

P= 2-7{‘; E logy{(p)

where N is the total number of words in the test set, and p is the
probability, estimated from training, of the observed transition.
The assumption is that the average word length is comparable
across the different domains. However, a more meaningful quan-
tity to measure is a phoneme-based perplexity. This quantity can
be expressed as:

P,=2"Fr 2 lu® _ pi

where u is the average word length, measured in phonemes, in the
test set. Observe that this quantity is normalized by the average
word length and is thus more relevant in reflecting the actual
difficulty of the task since our basic units are phonemes. On
Switchboard and WSJ, the phoneme-level perplexities are 5.0
and 2.9 respectively. We can translate these differences into a
word-level perplexity: a phoneme-level perplexity of 5.0 on WSJ
translates into a word perplexity of around 5.0*' = 730, which
is very high. Fortunately, the concept of a word is arbitrary
and we may want to consider common strings of words such as
”YOU KNOW” and ”A LOT OF” as a single word. We have
implemented a scheme where pairs of short words which occur
frequently define a single word that will be added to the original
lexicon. In addition to reducing the effective perplexity of the
task, this approach has other potentially beneficial effects in that
it allows for variable n-grams around these words; it also allows
for better acoustic modeling by artificially allowing crossword
triphones to be included in the passes prior to the lattice pass.

In our experiment, we only considered the merging of pairs of
words that have four phonemes or less, and we included in our
lexicon only pairs that occur more than 100 times. This resulted
in about 4000 new words. Using this augmented lexicon, a new



n-gram grammar was built and we measured a word error rate
of 48.7% on the standard test set. This result is summarized in
Table 7.

description normal | compound | word error
words words rate (%)
Baseline Sk 0 50.5
Compound-word 5k 4k 48.7

Table 7. Vocabulary size and word error rate for systems with
and without compound words.

4.2.2. Speaking Rate

We present here the analysis of our results according to speak-
ing rate (SR). At this point, we limit ourselves to “number of
vowels per second” as the measure for speaking rate and we as-
sume that this quantity is more or less constant over a sentence.
We measured the speaking rate for each sentence in the test set
and we partitioned the data into three groups of equal size (slow,
medium, and fast) based on the SR value. We present in Table 8
the thresholds, word error rate, together with other statistics, for
the full test set and the three groups. The medium group has,
by far, the lowest error rate: 46.2%; the slow group does worse:
48.2% errors; and the fast group has the highest word error rate:
55.9%. The error rate discrepancy between the medium group
and that of the two extreme sets shows that speaking rate is a
significant performance indicator. Considering the table in more
detail, we see two trends. Going from slow to fast, the number
of fillers per sentence decreases while the number of words per
sentence increases. The slow data have the most filler words and
also the highest perplexity. In addition, the sentences are shorter
on average, than those classified as medium or fast, which could
result from segmenting sentences at long pauses. These observa-
tions are indicative of what may be a global change in grammat-
ical structure and word usage resulting from speakers’ indecision
or hesitation. Further refinements in the language model may be
required to adequately capture these effects. The fast data set has
few fillers and higher perplexity compared to the medium data
set. One hypothesis for the significantly higher error rate on the
fast data is that there may be stronger coarticulation effects.

SR 3-gram | #ill | err | #sents | #wrds
(vow/s) perp.

[base. | VA [ 122 [ 200 [ 505 [ 524 [ 6724 |
slow <4 138 79 [ 482 175 1683
med. | 4t05 110 76 | 46.2 175 2370
fast >5 123 45 1559 174 2671

Table 8. Speaking rate (vowels/second), 3-gram perplexity, num-
ber of filler words, word error rate, number of sentences, and
number of words as a function of speaking rate group.

So far, we have mentioned effects that are sentence or even
conversation based. But, it is possible that local effects, that is
those occurring at the level of a few words, are important as
well. This is especially true with the fast speech. Duration mod-
eling might be one way to capture the local variation. However,
we believe this must be done at the word level rather than at
the phoneme level as preliminary results indicate that there are
commonly occurring words with a large durational variance.
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5. DISCUSSION OF THE RESULTS

In trying to reduce the word error rate on conversational speech,
we presented a range of experimental results using the Switch-
board corpus and the Macrophone corpus. We showed that sig-
nificant gains could be achieved by applying standard techniques
that work effectively on read speech such as WSJ. By combining
more complex models (trigram, crossword acoustic models) with
increased acoustic (143.2 hours of data) and language modeling
training, the word error rate was reduced from the 70% to the
50%. An additional gain was obtained by reducing the effect of
the short words by using a word pairing approach. It is important
to note that the overall reduction in word error was not dominated
by one or two single factors but was the result of a combination
of all the various changes made to the original system.

Although the overall improvement is significant, the final error
rate is still very high. We believe a great deal still needs to be
done to address the real nature of conversational data. We plan to
investigate acoustic models that can handle the large variability
due to the difference in speaking rates and the coarticulation of
words. At the same time, we are considering ways of improving
the language modeling to deal with pause fillers, and repeats and
restarts.
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