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ABSTRACT

We address the problem of using word graphs (or lat-
tices) for the integration of complex knowledge sources like
long span language models or acoustic cross-word models, in
large vocabulary continuous speech recognition. A method
for efficiently constructing a word graph is reviewed and
two ways of exploiting it are presented. By assuming the
word pair approximation, a phrase level search is possible
while in the other case a general graph decoder is set up.
We show that the predecessor-word identity provided by a
first bigram decoding might be used to constrain the word
graph without impairing the next pass. This procedure
has been applied to 64k-word trigram decoding in conjunc-
tion with an incremental unsupervised speaker adaptation
scheme. Experimental results are given for the North Amer-
ican Business corpus used in the November’94 evaluation.

1. INTRODUCTION

In the recent past, the use of word graphs or word lattices
has become quite popular among the various search tech-
niques applied to large vocabulary continuous speech recog-
nition ([1], [2], [3], [4], among others). These developments
have been stimulated by the need for dealing with still more
detailed acoustic models, more complex language models,
and vocabularies of still larger sizes, as many factors that
can lead to order of magnitude increases of the potential
search space. The main idea about word graphs is to come
up with word alternatives in regions of the speech signal
where the ambiguity of the recognition is high and to apply
subsequently more elaborate knowledge sources within this
narrowed-down search space.

We address the problem of using word graphs (or lat-
tices) for the integration of long span language models (LM)
and of more detailed acoustic models, in large vocabulary
continuous speech recognition. A method for efficiently con-
structing the word graph is first reviewed [5] and then, two
distinct ways of exploiting the word graph are presented.
In both cases, the word graph is generated with a bigram
LM using our standard one-pass algorithm based on word
conditioned lexical trees [6].

The first graph search technique concerns the applica-
tion of a long span LM in conjunction with the same acous-
tic models used for generating the word graph. The as-
sumption of the so-called “word pair approximation” leads
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to a very efficient algorithm: the search can be performed
at the phrase level by using as such the boundaries and
acoustic scores provided by the bigram word graph. This
algorithm achieves a good decoupling between acoustic and
syntactic levels and has already been successfully applied
to trigram LM decoding [3].

However the exact influence of the underlying word pair
approximation is unknown and on the other hand, the use of
different acoustic models implies that the word boundaries
and scores have to be re-evaluated anyway. This concerns
for example the integration of cross-word acoustic models
or the use of an unsupervised speaker-adaptation scheme
together with the best language model available.

Therefore we have been investigating a general graph-
search procedure either to perform “full” trigram decoding
or to efficiently implement more detailed acoustic models.
In particular, a phonetic network is built up for each word
arc to integrate cross-word triphones and alternative pro-
nunciations.

To reduce the complexity of the search, several con-
straints imposed on the word graph have been investigated
and the following results have been achieved:

o We show that the predecessor-word identity provided
by a first bigram decoding might be retained to con-
strain the word graph without impairing the next
pass. This leads to very low branching factors making
it unnecessary to resort to backing-off when creating
word copies for multiple trigram contexts.

e Using a full graph search technique, we are able to
assess the impact of the “word-pair approximation”
on the accuracy of trigram decoding. On typical Wall
Street Journal (WSJ) data (5k and 20k vocabularies),
a relative loss of only 1 to 2 % is observed when ap-
plying the phrase level search algorithm as opposed
to the “full” trigram decoding.

o This word graph procedure has been applied to tri-
gram LM decoding in conjunction with an incremen-
tal unsupervised speaker adaptation scheme for vo-
cabularies of up to 64k words.

o Experimental results are given for the “North Ameri-
can Business” (NAB) corpus used in the November'94
evaluation.
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2. BIGRAM WORD GRAPH CONSTRUCTION

We briefly explain the word graph construction that is em-
bedded in our one-pass bigram LM decoding [6]. More de-
tails can be found in [5].

The main idea is to keep track of word sequence hy-
potheses whose score is close to the locally optimal hypoth-
esis, but that do not survive due to LM recombination, and
to represent all these sequences by a graph in which each
arc is a word hypothesis.

In the one-pass algorithm, we approximate the most
likely word sequence by the most likely state sequence and
apply dynamic programming to compute the probabilities

Pr(wy..wn) - Pr(z;..zr|wi...wn)
in a left-to-right fashion and carry out simultaneously the
optimization over the unknown word sequence. Here, z;...z1
is a time sequence of observed acoustic vectors and w;...wx
is a hypothesized word sequence.

When an m-gram language model p(um|u]*™') is ex-
ploited in the course of the one-pass search, word sequence
hypotheses are recombined as soon as they do not differ in
their final (m —1) words. Therefore to distinguish partial
word sequence hypotheses, it is sufficient to consider only
their final words u3*. The corresponding score is denoted
by H(uz*;t):

H(u3';t) := max [Pr(w;') < Pr(zi|wl) : wip_myr = u;"]
wy

which gives the (joint) probability of generating the acoustic
vectors z1...r: and a word sequence with ending sequence
u3' and ending time t.

To arrive at the dynamic programming (DP) recursion,
we need to isolate the probability contributions of the last
word hypothesis with respect to both the language model
and the acoustic model. Hence we introduce:

h(w;T,t) i= Pr(zh,|w),

the probability that w produces the £,41...z; vectors. Now,
the score decomposition isolating the last word contribu-
tions can be visualized as follows:
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and using the above definitions, we can write the dynamic
programming equation at the word level:

H(uz';t) =maX[ P(um|u] ) -
max [H (] h(um; ', 1)] } 1)

The boundary itself between um_1 and 4y, for the word
sequence with final portion u}* ending at time ¢, follows
from a maximization operation:

r(ug;t) = arg max [ H@P™5t) h(um;t' 1) ]
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When using a bigram LM, this equation implies that the de-
pendence of the word boundary r(u]*;2) will be confined to
the final word pair ur;_;. This so-called “word pair approx-
imation” had originally been introduced in [7] to efficiently
calculate n-best sentences. The assumption that the other
predecessor words have no effect on the boundary position
of the ending word pair is surely satisfied if the word u,,—; is
long enough but is questionable for a one-phone word. As-
suming the word pair approximation, we have the following
algorithm for bigram word graph construction:

e At each txme t, we consider all active word pair hy-
potheses u} = (v,w) for which w ends at ¢. The
most probable word pairs are selected using a beam
pruning strategy.

o For each triple (v, w;t), we keep track of:
~ the (unique) word boundary (v, w;?)
— the word acoustic score h(w; r(v, w;t),1)

¢ At the utterance end, the word graph is constructed
by tracing back through the book keeping lists.

3. M-GRAM PHRASE LEVEL SEARCH

The task is now to extract from the bigram word graph the
“best” sentence according to a longer span (m > 2) LM,
Assuming again the word pair approximation, this search
can be performed at the phrase level i.e. using as such the
boundary points and the word acoustic scores coming from
the first bigram decoding pass. This leads to the following
left-to-right search algorithm:

o For each time t = 1,---,T and each triple (v, w;1) :

— Get boundary t = r(v, w;t) and score h(w;r,1)

— DP recursion for m-gram LM with wn_; = (v, w) :
H(u3;t) = max [p(um|u"‘_1) [H(u;"_l; T)h(um; 7, t)]] (2)

e The “best” sentence is obtained using back pointers.

In contrast to the general m-gram recursion (1), there
is no expensive time optimization of the boundary between
the two last hypothesized words. Instead, the segmenta-
tion points and acoustic scores included in the bigram word
graph are injected which leads to a dramatic complexity
reduction. For a trigram LM, the phrase level search repre-
sents less than 1% of the effort for constructing the bigram
word graph. Table 1 presents recognition results obtained
on two WSJ test-sets for a vocabulary of 45,000 words. In
both cases, there are 0.35% OOV’ words and nearly one
fifth of the errors are recovered.

Table 1: From Bigram to Trigram LM for 45k Lex.
WER=Word Error Rate {Del+Ins+Sub)

WSJ BIGRAM TRIGRAM |[Rel.Err]

Test-Set  [WER % Perp. [WER % Perp. {|Reduct.

Nov'92 Evl|| 11.9 219 9.8 146 | -18% |
Nov'93 Evifl 164 233 || 13.4 146 || -18%

Still the exact influence of the underlying word pair as-
sumption is unknown. In Section 5, experimental results



obtained with a general graph search technique will give
some evidence that the degradation caused by the word
pair approximation is quite small.

4. FULL WORD GRAPH DECODING

4.1. Extraction of Syntactic Content

Our starting point consists of the bigram word graph de-
scribed in Section 2. This is nothing but a time-structured
list of word hypotheses consisting of word identity, start-
and end-time, acoustic score and predecessor word identity.
To represent all these word sequences by a graph data struc-
ture, the definition of a node has to be specified, each arc
being a word hypothesis. Two cases have been considered.

In the general case a node is simply a time-mark. This
means that all word hypotheses ending at time ¢ are point-
ing to the same node and might be followed by any word
starting at ¢ + 1 in the word graph.

However, the success of the search algorithm of Section
3 suggests that the predecessor word identity provided by
the bigram decoding might be used to constrain the word
graph without impairing the next pass. When this prede-
cessor word dependence is to be kept, a node is defined as a
pair {time, predecessor-Id}. In this “bigram-constrained”
word graph, the predecessor information is thus used to
restrict the connections between succeeding words. Appli-
cation of this constraint is supported by the observation
that if a particular word pair has a very small (bigram) LM
probability, any m-gram (m > 2) including this word pair
is likely to be also of very small probability.

On the other hand, we are no longer interested in the
time and score informations as we now intend to perform
a full decoding at the 10-ms level, possibly using different
acoustic models. Instead, we want to get rid of all copies of
words occurring in the same contexts at consecutive time
frames since they do not bring anything new in terms of syn-
tactic richness and they will only burden the graph search
process. To eliminate these copies of words appearing in
the same contexts, nodes that are closely spaced in time
are merged using several reduction rules. This provides a
very significant “compaction” effect.

4.2. Word Phonetic Networks

For each arc in the graph, a word model has to be speci-
fied in terms of elementary acoustic units. These are typi-
cally triphones conditioned on the left and right phonemes.
When cross-word coarticulation effects are explicitly taken
into account, the triphones at the begin and end of a word
depend on the neighboring words as given by the graph
structure. Therefore, multiple triphone instances are cre-
ated at the initial and final position of a word model, the
number of which depends on the local graph characteristics.
Note that for the bigram-constrained word graph, there is
only one predecessor context.

Alternative pronunciations are introduced by allowing
the substitution and skip of particular phones. Cross-word
dependent assimilation rules are also used to model “hard”
pronunciation changes that occur at word juncture [8], for
example when a phone is completely deleted like in ” ... re-
ceive(d) the ...”. As a result, a phonetic network is build up
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for each word hypothesis and inserted in the graph together
with optional between-word silence models.

4.3. Viterbi Graph Search

Decoding proceeds from left to right using a time-synchron-
ous search algorithm with a beam-pruning technique. How-
ever the word graph has first to be expanded with respect
to all contextual constraints introduced by either the LM
or the cross-word models. For an m-gram LM, words ap-
pearing in different contexts have to be duplicated to keep
track of all hypotheses differing in their final (m—1) words
(Section 2). Consecutive word arcs are then connected with
language transitions whose probabilities are given by the m-
gram LM. In case of a trigram-LM for example, separate arc
copies are made for each predecessor word and are recom-
bined at the end of the succeeding word. This implies that
if the word graph exhibits a local branching factor of b, with
b arcs pointing to - and leaving each node, 5° language tran-
sitions are requested which leads to a prohibitive number
of arcs in the region of the sentence where the ambiguity of
the speech signal is high.

So far, this problem has been solved mainly by relying
on the back-off property of the LM, i.e. by duplicating
an arc only if the corresponding m-gram has been taken
explicitly into account by the LM (see a.o. [1], [4]). Our
solution consists of two parts:

e Tirst, the word graph is expanded dynamically on
demand, that is, only when a word-end hypothesis is
reached and kept active within the beam.

¢ Second, bigram-constrained word graphs are used
that request only b language transitions for a tri-
gram LM since the predecessor dependence has al-
ready been integrated.

5. EXPERIMENTAL RESULTS

5.1. Impact of Word Pair Approximation
and Predecessor Constraint

To get some measure of the accuracy loss introduced in tri-
gram decoding either by the word pair approximation or by
the predecessor constraint, several graph search strategies
have been tested on the November’92 WSJ evaluation set
(4 males, 4 females, 5k and 20k vocabularies).

We first generated word graphs of high density using
our standard bigram-LM beam search, to insure that the
spoken word sequences were included in the word graphs
whenever possible, i.e. in the absence of Out-of-Vocabulary
(OOV) words. The details of the acoustic modeling and
training are described in [3]. Then, trigram decoding has
been performed under 3 different search conditions, all other
things being identical:

e First, we used the phrase level search algorithm rely-
ing on the word pair approximation (Section 3, Equa-
tion 2).

o Next, we applied the “full” graph decoding procedure
with large beam widths to a general graph data struc-
ture obtained from the original bigram word graph.



¢ Third, the same procedure was applied to a bigram-
constrained word graph that preserves the predeces-
sor information of the original bigram decoding, how-
ever without time and score information.

Table 2 summarizes the recognition results at the word
level, obtained with a trigram LM for 5k and 20k vocabular-
ies. For each test condition, the Word Error Rate (WER%)
is given together with both the average and maximum num-
ber of word arcs expanded per sentence in the course of the
graph-search process.

Table 2: Trigram Results on the Nov’92 WSJ Test-Sets

Algorithm WERY | Av.#Arcs | Max.#Arcs
5k Closed-Vocabulary
Word Pair 4.90% - -
General Graph 4.75% 5,000 108,000
Bigram Graph 4.75% 1,300 18,000

20k Open-Vocabulary

Word-Pair 11.9% - -
General Graph 11.8% 7,000 114,000
Bigram Graph 11.8% 1,400 14,300

The following conclusions can be drawn:

e The word pair approximation introduces a relative
degradation of less than 2% and we did observe that
essentially short words are affected.

e Compared to general word graphs, bigram-constrained
word graphs achieve the same precision.

e The number of arcs expanded during search is dras-
tically reduced in the last case due to the very low
branching factors of bigram-constrained word graphs.

5.2. 64k-Word Trigram and Speaker Adaptation

Using the full graph search procedure, we can combine tri-
gram decoding with incremental speaker adaptation. The
principle of incremental unsupervised speaker adaptation
amounts to update the acoustic models after each spoken
sentence by using the alignment between the speech signal
and the recognized word sequence. The success of such a
scheme depends partly upon the correctness of the recogni-
tion, hence the interest for taking the best available LM.

This technique has been applied to the North American
Business (NAB) corpus which contains read articles taken
from several newspapers with an unlimited vocabulary. To
achieve a high coverage, a vocabulary of 64k words has been
taken. Table 3 gives some information about the two test
sets used for the Nov'94 ARPA evaluation. Both sets in-
clude 10 male and 10 female speakers each having uttered
15 sentences of about 25 words.

Table 3: NAB’94 Coverage & Perplexity for 64k Vocab.

Set || #Words | % OOV | BI-Perp | TRI-Perp
Dev 7,387 0.53 230.0 137.2
Evl 8,186 0.79 231.3 137.6

In our system, the acoustic models are based on mix-
tures of continuous densities and so far, the adaptation
scheme concerned only the mean vectors [9], the mixture
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weights being kept fixed. Table 4 summarizes the 64k-word
recognition results.

Table 4: NAB’94 Recognition Results for 64k Vocab.

Set || BLWER | WG-D | TRI-WER | #Arcs | RT
Dev 14.7% 38 11.7% 6.2k 1.8
Evl 14.8% 108 11.5% 24.5k | 3.2

The density of the word graphs is expressed in terms
of the average number of word hypotheses per spoken word
(WG-D). Note that for the evaluation set we used much
larger beam widths to minimize the risk of search errors.
The average number of arcs expanded per sentence during
the trigram graph-search is also given together with the
real-time factor (RT) of the decoding on a DEC Alpha work-
station. About 75% of the CPU time is actually devoted to
the log-likelihood computations. Speaker adaptation brings
a relative improvement of about 5% while a trigram reduces
the errors by about 20% with respect to a bigram LM.
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