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Abstract

The system described here is a large-vocabulary contimious-
speech recognition CSR? system developed using the ARPA Wall
Street Journal[15] (WSJ) and North American Business (NAB)
databases. The recognizer uses a stack decoder-based search
strategy[l, 7, 14] with a left-to-right stochastic language model.
This decoder has been shown to function effectively on 56K-word
recognition of continuous speech. It operates left-to-right and can
produce final textual output while continuing to accept addijtional
input. The recognizer also features recognition-time adaptation to
the user's voice. The new system showed a 48% reduction in the
word error rate over the previously reported Nov. 92 system([16]

1. The Basic HMM CSR System

The “initial system” reported at ICASSP 93[16] was a two
observation-stream &I;ld and A-mel cepstrum) Gaussian tied-
mixture[3, 6] (TM) HMM CSR using cross-word sex-dependent
semiphone models. Larger machines have since allowed the use of
triphones and three observation streams. More recently, there has
been evidence that combined observation streams using a larger
number of mixture groups with fewer Gaussians in each group
produces better results{4, 23} and therefore the system has been
changed to use monophone-tied mixtures[9]. Monophone tied mix-
tures (MTM) were chosen because the decoder needs lower-context
models in the fast match and if too many mixture groups were
used, the efficiency of the fast match would be compromised. The
MTM systems are also much smaller than the corresponding TM
systems, primarily due to an order of magnitude reduction in the
number of mixture weights. During this time period, the amount
of available speaker-independent (SI) training data has also in-
creased from 16 hours (SI-84) to 82 hours (SI-284).

2. The Trainer

The trainer has been improved in several ways: initialization, pa-
rameter estimation, and quantization error reduction.

2.1 Model initialization

The pdfs for the triphones are initialized by a monophone boot-
gtrapping procedure. For instance, for a TM system, the sequence
is:

Initialize Gaussians (data subset)

Train monophone models from a flat start using the Baum-
Welch algorithm (data subset)

Train monophone models (all data)

Initialize triphones from monophones

. Train triphones using the Baum-Welch algorithm

It was found that a binary-splitting K-means (i.e. Top-1 EM)
was preferable to a binary-splitting EM to initialize the Gaussians
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because the EM procedure produced degenerate sets of Gaussians
whereas the K-means procedure produced non-degenerate (i.e. no
two Gaussians were identical) sets.

The MTM systems required a modification of the bootstrapping
procedure:

. Train single Gaussian per state monophone models from a
flat start using the Baum-Welch algorithm (data subset)
alternate binary splitting and training until the desired num-
ber of Gaussians is reached (data subset)

. Train monophones (all data)

. Initialize triphones from monophones

. Train triphones using the Baum-Welch algorithm

It was found that a much larger subset of the data was required in
the early stages to produce the best recognition results. Several
bootstrapping procedures based upon training single-Gaussian per
state triphones and then clustering the Gaussians to form mixtures
were also tested but failed to outperform the above.
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2.2 Gaussian Variance Bound Addition

A well-known problem in ML estimation of Gaussian-dependent
variances in Gaussian mixtures is variance values that go to zero.
Two common methods for preventing this singularity are lower
bounding or using a grand variance. Simple addition of a con-
stant to each variance has been found to be a superior alterna-
tive to lower bounding: it is equally trivial to apply and has
yielded superior recognition performance on several recognition
tasks. For instance, for several tasks using single observation
stream Gaussian-dependent variances:

Error Rate {std dev)
System Var lim | Var add
Si-84 CSR 16.7
D) 18 1.4

In both tasks, the performance was improved by over two standard
deviations by the use of variance addition. While not needed to
insure non-singularity, variance addition was also found to improve
recognition in a grand variance system:

Error Rate (std dev)
System none Var im Var add
S84 CSR | 25.2% (.5 20.5% (-5 17.5% (5%

In spite of the robustness of the estimate of the grand variance,
the performance is improved significantly by variance limiting and
even more by the variance addition.

Clearly the variance addition is doing something more than just
preventing singular variances. One possible viewpoint is that vari-
ance addition is a soft limiting function. A simple bound throws
away all information about the original variance while the addition
retains some of the original information. Another possible view
is that the variance addition is providing signal-to-noise (S/N)
ratio compensation. Each component of the observation vectar
contains both useful signal and noise. Variance addition might
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act like a Wiener filter in adjusting the gain on each component

appropriately:
1 Vi (wi—-m)? _ 1
T2 Z Vi + timi Vi 2 Z
s 1]

where the second term on the left is the normal summation term
in the exponent of a diagonal covariance Gaussian and the first

(mi = mi)?

Vi +lim;

term on the left is analogous to a Wiener filter if lim ; represents

the noise power.

2.3 Trainer Quantization Error Reduction

The SI-284 training condition of WSJ1 uses 30M frames of train-
ing data and, in the Baum-Welch training procedure, significant
fractions of these frames are summed into single numbers resulting
in quantization error. Due to space limitations, the accumulators
are stored as two-byte log-probs. Multi-layer sums were used to
reduce the quantization error without unduly increasing the datas-
pace requirements.

Since there were relatively few (diagonal covariance} Gaussians
in these systems quantization in estimating them was reduced
adequately by the use of double-precision accumulators.

3. The Recognizer

The stack decoder is organized as described in reference [14]. The
basic paradigm used by the stack decoder is:

1. Pop the best theory (partial sentence) from the stack.

2. Apply acoustic and LM fast matches{2, 5] to produce a short
list of candidate next words.

Apply acoustic and LM detailed matches to the candidate
words.

4. Insert surviving new theories into the stack.

Each theory has an ending time likelihood distribution and the
most likely time on this distribution [12, 14] will hereafter be be
referred to as the theory ending time. The stack is a sorted list
of theories where the theories are ordered primarily shortest first
based upon their ending times, and secondarily by liklihood at
these ending times (best first). Any theory whose ending time
likelihood is less than that of the best for the same ending time
by more than some threshold is pruned from the stack. Thus the
shortest theories are expanded first which has the net effect of
working on a one to two second active region of the input and
moving this active region left-to-right through the data.

The “extend each partial theory with one word at a time” ap-
proach allows the use of a particularly simple interface to the LM.
All requests to the LM are of the form: “Give me the probability of
this one-word extension to this theory.” This has been exploited
in order to place the LM in an external module connected via
pipes[10]3. Since the N.gram LMs currently in use are trivial to
compute, the LM fast match probability is currently just the LM
detailed match probability.

This stack decoder, since all information is entered into the
search as soon as possible, need only pursue a “find the single
best path and output it” strategy. It is also possible to output an
N-best list of sentences with trivial modifications{12, 14].

Given this search strategy, it is very easy to produce output
“on the fly” as the decoder continues to operate on the incoming
data. Any time the first N words in all entries on the stack are the
same they may be output. (This is the analog of the “confluent
node” or “partial traceback” algorithm [21] in a time synchronous
decoder.) No future data will alter this partial output.

Similarly, since the active zone moves left-to-right though the
data, the stack decoder can easily be adapted to unbounded length
input since the various bounds and the like need only cover the
active region.

3.

3.1. The Fast Match

The acoustic fast match (FM) uses a two pass strategy. Both
passes search a left-diphone tree generated from the recognition
vocabulary. The first pass takes all theories for which end at
the current time and combines their log-likelihood distributions
to create the input log-likelihood for the decoder. This decode

3This interface has also been used to integrate an MIT TINA
NLP[20] into a single-pass search CSR[22].
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produces two outputs: pruning thresholds for the second passes
and marks on all diphone nodes for words whose FM output log-
likelihood exceeds the FM output threshold envelope.

The second pass is applied once for every theory which was
included in the above combination. It applies the exact log-
likelihood from the detailed match as input to the left-diphone
tree using pruning thresholds from the first pass and searching
only the marked diphone nodes. The word output log-likelihoods
are added to the LM log-probabilities to produce the net word
output log-likelihoods. The cumulative maximum of these net
log-likelihoods plus a (negative) threshold now produces the FM
output threshold envelope. Any word whose output log-likelihood
exceeds this threshold envelope is placed on the candidate word
list for the detailed match.

Both passes of the fast match use a beam pruned depth-first
(DF) search of the diphone tree. The DF search is faster than
a time-synchronous search due to its localized data. At any one
time, it only needs an input array (which was used very recently),
and output array (which will be used very soon), and the parame-
ters of one phone. This allows the DF search to stay in cache §~1
MB on many current workstations) and to page very efficiently.

A goal of recognition system design is to minimize the overall
run time without loss of accuracy. In the current system, this
minimum occurs (so far) with the relatively expensive fast match
described above. It is the largest time consumer in the recognizer.
Using pruning thresholds that reduce the number of fast match
pruning errors to below a few tenths of a percent, this fast match
allows only an average of about 20 words of a 20K word vocabulary
to be passed to the detailed match.

3.2 The Detailed Match

The detailed match (DM) is also currently implemented as a
beam-pruned depth-first searched triphone tree. The tree is pre-
compiled for the whole vocabulary, but only triphone nodes cor-
responding to the FM candidate words are searched. The LM
log-probabilities are integrated into the triphone tree to apply the
information as soon as possible into the search. Because the right
context is not available for cross-word triphones, the final phone
is dropped from each word and prepended to the next word.

4. Component Algorithms

This recognition system includes a variety of algorithms which are
used as components supporting the major parts described above.

4.1 Bayesian Smoothing

In a number of situations it is necessary to smooth a sparse-
data estimate of a parameter with a more robust but less ap-
propriate estimate of the parameter. For instance, the mixture
weights for sparse-data triphone pdfs might be smoothed with cor-
responding mixture weights from the corresponding diphones and
monophones[19. The following smoothing weight estimation al-
gorithm applies to parameters which are estimated as a [wei
average of groups of training data.

A standard Bayesian method for combining new and old esti-
mates of the same parameter is

_ Nn No z

Not+No " Nat+No =
where z is the parameter in question and N is the number of
counts that went into each estimate and the subscripts n and o
denote new and old. Similarly if one assumes the variance v of
each estimate is inversely proportional to N (i.e. v « %),
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The above assumes r,, and z, to be estimates of the same
parameter. However, in the case of smoothing, the purpose is to
use data from a different but related old parameter to improve the
estimate of the new parameter. Thus

E(z]) = E[zn] # Elz,)-

If one assumes that the expected values of z and z , differ by a
zero mean Gaussian representing the unknown bias,

E{z] - E[zo] = G(0,vq)
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then a corrected estimate for the old variance is

vf, = vo + v4.
If we now substitute the new value for v, and return to the initial
form of the estimator,

Nn N} . NoNg
= h Ny= ———.
F Nt Néxn + Nt N;x° where °= No¥ NN

Note that N < Ny and thus the smoothing equation discounts
the value of the old data according to N 4 which, for the above
examples, may be determined empirically. This equation can be
trivially extended to include multiple old estimates for smoothing
a triphone with the left diphone, right diphone, and monophone.
In this recognition system, symmetries and linear interpolation
across states have been used to reduce the number of N 4's for
triphone smoothing from twelve to three. This smoothing scheme
has also been used for speaker adaptation and language modeling.

4.2 Pdf cache

Tied mixture pdfs are relatively expensive to compute and a pdf
cache is necessary to reduce the computational load. The cache
must also be able to grow efficiently upon demand and discard
outdated entries efficiently. Algorithms such as hash tables do
not grow efficiently and have terrible memory cache and paging
behavior. Instead, the pdf cache is stored as a dynamically allo-
cated three dimensional array:

pdf [t/ T][s][t%T]

where t is time, s is the state, and % is the modulo operator.
Only the first level pointer array ([t/T]) is static, both the [s]
pointer arrays and the actual storage locations [¢%T] are allocated
dynamicaily. Outdating is simple: remove all pointer arrays and
storage locations for t/T < t//T (integer arithmetic), allocation
occurs whenever a null pointer is traversed, and access is just two
pointers to a one dimensional array. It is also a very good match
to a depth-first search since such a search accesses the states of a
phone sequentially in time for a number of time steps which gives
very good memory cache and paging performance. This caching
algorithm is used in both the trainer and the recognizer.

5. WSJ Recognition Results
The 5K and 20K word vocabulary WSJ recognition results are:

Str x K 20K |
System | Train | Pho Pdf | Gauss | WErr | WErr
NovoZ | SI-34 | Semi | TM 3x257 | 13.0% | 21.8% |
BT84 T TM | 3x257 | 9.9% | 16.9% |
Nov o3 | 91284 | In T™M [ 3x257 | 7.9% | 14.2% |
ovod | 5k-284 | I | MIM | 1x64 T0% | 13.0% |
5K Word err: p=62 NVP trigram LM, std dev=.3-.4%,

20K Word err: p=160 NVP trigram LM, std dev=.4-.5%,
WSJO/WSJ1 training, WSJO test, closed vocab,
X-word sex-dependent semi/triphones, cep+Acep+AAcep

Both show about two-thirds of the improvement between thé Nov.
92 and Nov. 93 systems to be due to the algorithmic improve-
ments and about one-third to be due to the increased training
data. Small additional performance improvements (along with a
substantial size reduction) were obtained by switching to MTM
pdfs for the Nov. 94 system. The total improvement is 48% for
the 5K word system and 40% for the 20K word system.

6. The NAB Task

We have recently begun working on the ARPA North American
Business (NAB) task, which is similar in form to the WSJ task,
except that the LM training and the test prompts are derived from
several newspapers. It has iee.n structured as an open vocabulary
task. Results are shown for the CMU-supplied 20K baseline com-
pact trigram backoff LM and a 56K compact trigram backoff LM.

[ LM [ Vocab T Wd err | perplex | OOV wds |
baseline 20K 25.7% | 135.4 2.6%
56K trigram | 56K 23.6% 147.2 9%
MTM systems, NAB dev testl, WSJ1 training, 2 obs streams,

non-X-word, non-sex-dependent triphones, std dev ~.5%
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The 56K vocabulary was chosen as the intersection of the 64K
most frequent words and a CMU-supplied 100K word dictionary
used for the task.

7. Additional Techniques

Several other techniques have been explored, but were not used in
the above systems.

7.1 Language modeling

A potentially new form of interpolated N-gram LM has been de-
veloped. The basic interpolated trigram LM is of the form:

p(wi) = Xopo + Mp1(wi) + depa(wilwi—1) + Aspa(wilwi—1, wi—2)

where p(w|r) = count(w,z)/count(z), w is the predicted word
and z is the context word([s]. However, p2 and p3 are undefined if
their contexts were not observed. Thus, since all p ; must sum to
one for each context, something must be done to avoid using the
undefined terms. One method is to substitute lower order proba-
bilities for the undefined terms. The potentially new strategy is
to back off to a lower order (i.c. a backed-off interpolated LM
using several sets of As. (This is distinct from a back-off LM.
This strategy uses several sets of X ; js:

if the bigram w;_jw;_2 exists: use po — p3 and A3 x
else if the unigram w;_; exists: use po — pz and Az i
else use po — p1 and Ay &.

This avoids the need for heuristic strategies to substitute for the
undefined terms and produces slightly lower perplexities. All of
the results listed below for interpolated LMs use this scheme.

The original choice of the compact back-off form of an N-gram
LM for the ARPA LVCSR baseline LMs was made by the author
with little scientific justification[15]. Many papers on language
modeling have been published using perplexity to compare LMs,
but there is significant evidence that perplexity is a poor predictor
of recognition performance(13]. Thus we undertook a series of
experiments comparing the actual recognition performance of a
recognizer using several different N-gram LMs.

full LM compact LM
ILMtype I erplex | wd err erplex | wd err
GT disc. Back-off 60.1
. Back-ol .
Interpolated | 64.7
“Bucketed Interp || - 61.4

G T=Good-Luring discount, FD=fixed discount
TM-2 systems, closed 5K NVP vocab, trigram LMs,
WSJO training and test data, 2 obs streams
non-X-word, non-sex-dependent triphones, std dev ~.4%,
compact LMs dropped the count=1 trigrams

The GT discount back-off LMs used the Good-Turing discount
(as in[8]), the fixed discount back-off LMs used an n :n+l dis-
count, the interpolated LMs are described above, and the buck-
eted interpolated LMs used multiple sets of of As indexed by the
context count. This experiment was performed using the stack
decoder-LM interface{10] to allow the LM modules to be inter-
changed without modifying the recognizer.

These results show only a small difference between the two
forms of discounting for the back-off LMs. The simple interpo-
lated LM is no worse than the bucketed interpolated LMs. The
back-off LMs perform about 1.5 standard deviations better than
the interpolated LMs and the full LMs are about 1.5 standard de-
viations better than the compact LMs. All-in-all, the initial choice
of compact back-off LMs for the baseline LMs was a reasonable
trade-off of performance and size.

7.2 Fast Adaptation

Human listeners are capable of adapting very rapidly to a new
speaker, but most ASR systems can only adapt slowly to a
new speaker (e.g. [16]). A technique for very rapid adap-
tation of a TM system to a new speaker has been devised.
Some earlier experiments in speaker adaptation used a training
procedure which produced speaker-independent mixture weights
and speaker-dependent Gaussians at one point in the training



process[16]. Using a model of this form, the recognition system
can first perform speaker-identification to find the closest set of
Gaussians to the current speaker and and then to recognize the
speech using that set of Gaussians. Such a process is feasible in
a TM system because the sets of Gaussians are fairly'small and
it is practical to have multiple sets of Gaussians (one per training
speaker). The results are:

Sets of
Training Gaussians | Wd err rate
normal SI-84 1 11.8%
SI-12 12 12.7%
S84 84 11.3%
normal S1-284 1 10.6%
SI284 pi:7! 10.2%
TM systems, closed 5K, NVP, p=62 trigram LM,

WSJ0/1 training and WSJO test data, 2 obs streams
non-X-word, non-sex-dependent triphones, std dev ~.4%

The multiple Gaussian set SI-84 system (~85 sentences per
speaker) was a slight improvement over the normal SI-84 system
and the multiple Gaussian set SI-12 (600 sentences per speaker)
was slightly worse than the normal system. Clearly there are
trade-offs between the number of speakers and the number of sen-
tences per speaker which cannot be explored adequately with the
given training data. The earlier work reported in Ref. [16] sug-
gests that such a set of Gaussians will adapt better by traditional
parameter adaptation methods than will a traditional SI set of
Gaussians. However, the above results show the technique to be
worthy of further exploration.

8. Discussion And Conclusions

The Nov. 92 system had been limited to two-observation-stream
semiphones to limit the size of the system to one that would op-
erate efficiently on the then available machines. The Nov. 93
system gave significantly better performance, but was too large to
be practical. Finally, the MTM pdfs in the Nov. 94 system were
much smaller and still yielded a small performance improvement.

Quantization error in the trainer is very subtle. The Baum-
Welch training algorithm is sufficiently stable that it will only be
found if one specifically looks for it. The primary effect in the
systems described above is a “flattening” of the pdfs through a
net upper-bounding of the mixture weight accumulation sums.

The stack-decoder has been shown to be an effective decoder
for large vocabulary CSR both here and elsewhere[1]. Because it
efficiently combines all information into a single unified search and
it makes a zonal left-to-right pass though the input data, it can
produce the recognized output contimiously as more data is input
as well as handle unbounded length input. Most of the compu-
tation in the above CSR is consumed by the acoustic fast match.
(The stack itself is a very efficient mechanism for limiting the num-
ber of theories which must be expanded.) Thus the largest future
speed-ups will probably result from faster fast matches. Signifi-
cant speed-ups have already resulted from a mixture of strategies,
such as pdf caching and covered theory elimination, and imple-
mentations which use the machine architectures efficiently without
compromising portability.

The Bayesian smoothing fills in a long-standing gap in the
smoothed triphone scheme[19] The smoothing weights must be
computed by deleted interpolation{l] which requires at least sev-
eral instances of the triphone or estimated by some non-data-
driven method. The non-data-driven methods have generally been
ad-hoc[11, 19]. This gives theoretical support for a functional form
based upon the amounts of data available to train each object and
the objects’ similarity. This smoothing approach has also been
used for acoustic adaptation and in language modeling.

Finally, variance addition is useful as a simple technique to re-
duce the error rate in many Gaussian mixture (or multiple Gaus-
sian) based systems. Many standard techniques for dealing with
varying S/N in the observation components perform a linear trans-
form on the observation vector and then drop some of the resulting
components. This all-or-nothing dropping of components throws
away some signal with the noise. In contrast, variance addition
attempts to weight each term according to its value. This tech-
nique appears to be related to the technique of “diagonal loading”
(adding a constant to the diagonal of a matrix) that is sometimes
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used to increase the stability and/or noise immunity of a covari-
ance matrix prior to inversion{17].

The above-described CSR system is well suited to handle the
large vocabulary CSR problem. Many problems still need work—
speed, size, accuracy, and robustness, to name a few—but im-
provements in all should be possible.
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