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ABSTRACT

A high-quality 8-kbit/s speech coder based on Conju-
gate Structure CELP (CS-CELP) is proposed that uses a
trained sparse conjugate codebook. The trained sparse con-
Jugate codebook improves speech quality for noisy speech.
This codebook consists of two sub-codebooks and each sub-
codebook consists of a random component and a trained
component. Each component has excitation vectors con-
sisting of a few pulses. In the random component, pulse
position and amplitude are determined randomly. The
trained component is determined by training. Subjec-
tive tests (Differential Mean Opinion Score, DMOS and
Mean Opinion Score, MOS) indicated that this codebook
improves speech quality compared with the conventional
trained codebook for noisy speech. The MOS showed that
the quality of improved CS-CELP is equivalent to that of
the 32-kbit/s ADPCM for clean speech.

1. INTRODUCTION

The ITU-T is currently standardizing an 8-kbit/s speech
coding algorithm. During the selection phase, there were
two candidates: Algebraic Code Excited Linear Predic-
tive (ACELP) from France Telecom and the University of
Sherbrook{1] and Conjugate Structure Code Excited Lin-
ear Predictive (CS-CELP) from NTT[2][3]. The speech as-
sessment group found that both codecs had quality equiv-
alent to that of the 32-kbit/s Adaptive Differential Pulse
Code Modulation (ADPCM) in error-free conditions and
that both codecs met the requirements for random bit error
and tandem conditions. Unfortunately, neither codec met
the requirements for input level variation, frame erasure, or
environmental noise conditions. In the Tokyo ad-hoc meet-
ing of the ITU-T in March 1994, France Telecom and NTT
agreed to form a task group to arrange a compromise.

The ITU-T 8-kbit/s codec will be used for FPLMTS
(Future Public Land Mobile Telecommunication Systems}),
which is the next generation of communication systems.
Since these systems use compact sets, people can communi-
cate with anyone in stations, cars, airports, etc. But these
are noisy environments. Therefore, good speech quality in
the environmental noise conditions is important.

This paper focuses on environmental noise conditions
by using CS-CELP coding. The ITU-T requires that the
quality of the 8-kbit/s coder be no worse than that of the
32-kbit/s ADPCM under environmental noise conditions.
Speech quality is evaluated by using the DMOS: this com-
pares the coded speech with the original speech plus noise.
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Therefore, the coder must efficiently encode the noise as
well as the speech.

To improve the quality of coded speech in a noisy envi-
ronment, we tried several techniques and found that two
factors were important: the Line Spectrum Pair (LSP) pa-
rameters and the fixed-shape codebook. The LSP param-
eters have to be trained using a mixed database consisting
of clean speech and noisy speech. To minimize spectrum
distortion in the clean speech, we rearranged the bit allo-
cations of the coder and assigned one more bit for the LSP
quantization.

This paper presents a trained sparse conjugate codebook
that improves speech quality in a noisy environment. This
codebook consists of a random component and a trained
component. Each excitation vector consists of a few pulses.
In addition to improving the quality of coded speech in a
noisy enviroment, this codebook reduces the computational
complexity of a fixed-shape codebook search.

2. CONJUGATE STRUCTURE

The conjugate structure is so named because the relation-
ship between the two codebooks used in this scheme is con-
jugate[4). In conjugate VQ, an output codevector is gen-
erated by summing two vectors, each stored in a different
codebook. Both the shape vector and the gain vector are
summations of two vectors from two sub-codebooks. The
shape-excitation vector C; is the sum of the two excitation

vectors
c,‘ = 01 . Caublj + 92 . Caub!k s (l)

where 6, and 8, are signs and C,us1; and C,us2k are exci-
tation vectors in the sub-codebooks.

We previously proposed pre-selection of the codebook
search to reduce complexity[2](3]. The pre-selection pro-
cess selects M (out of N) candidates by using the cross-
correlation (XTH)C,, where N is the sub-codebook size,
X is the weighted input speech, H is the impulse response
matrix, and C; are the fixed-shape excitation vectors. In
closed-loop analysis, when the best excitation vector is de-
termined, only the pre-selected candidates are filtered by
the impulse response matrix. Since the fixed-shape code-
book consists of two sub-codebooks, the pre-selection pro-
cess is performed for each sub-codebook.

3. TRAINED SPARSE
CONJUGATE CODEBOOK

The fixed-shape codebook consists of Gaussian random vec-
tors or trained vectors. Since each vector has a set of full
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pulses, the search of the fixed-shape codebook involves a
lot of computational complexity. To reduce the complex-
ity, a sparse codebook has been proposed. Since a sparse
codebook has only a few non-zero pulses, it can reduce the
complexity and also memory requirement. Pulse position
and amplitude were determined randomly, that is, each ex-
citation vector was generated by clipping the center of a
random Gaussian signal. But this did not provide high
speech quality.

We found that each trained excitation vector is pulsive
and that each vector can be replaced by a few pulses. We
propose the trained sparse conjugate codebook, in which
each excitation vector consists of a few pulses: pulse posi-
tion and amplitude are determined by training. This sparse
codebook reduces the complexity of the cross-correlation
calculations during pre-selection and the complexity of the
filtering operation during closed-loop analysis.

If the length of the excitation vector is L (=40 in CS-
CELP), a full-pulse codebook has L pulses. In cross-
correlation calculations, the full-pulse codebook needs L
multiplication and addition operations for each excitation
vector. On the other hand, if the sparse codebook has
K(=2 or 5) pulses, these operations are needed only K
times. In the filtering operation, the full-pulse codebook
needs L(L — 1)/2 multiplication and addition operations.
Although the complexity of the filtering operation in the
sparse codebook depends on pulse positions, the sparse
codebook needs only K(K —1)/2 + K(L — K) multipli-
cation and addition operations in the maximum case.

Figure 1 shows the segmental SNR versus the number
of pulses in the sub-excitation vector. Since the excitation
vector in conjugate codebook is the summation of two sub-
vectors, the excitation vectors have twice as many pulses.
The dotted lines show that the sub-excitation vector is a
full-pulse (=40) vector. Even if the sub-codebook consists
of only two pulses, the difference compared with the full-
pulse codebook is small.

4. SPARSE CONJUGATE CODEBOOK
FOR NOISY ENVIRONMENT

Although the trained codebook provides high-quality for
clean speech, it provides unsatisfactory quality for noisy
speech, because the trained codebook is not always able
to handle the noise. An untrained codebook may actually
provide better quality than a trained one for noisy speech,
but it cannot provide high quality for clean speech.

We therefore adapted the trained sparse conjugate code-
book to handle a noisy environment. This modified sparse
codebook consists of 2 random component and a trained
component, as shown in Figure 2. Each component has ex-
citation vectors consisting of a few pulses. In the random
component, pulse position and amplitude are determined
randomly; that is, each excitation vector is generated by
center-clipping a random Gaussian signal. Since the ran-
dom component does not depend on the speech charac-
teristics, it handles noise better than the trained one. To
maintain high quality for clean speech, the trained com-
ponent is determined by training. However, the training
must be done considering the influence of the random com-
ponent, and the training database is a mixed one consisting
of clean speech and noisy speech.
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Fig.1. Segmental SNR versus number of pulses in sub-
excitation vector.

sign

random 9
component

trained
component

<

excitation

random vector

component

trained
component

Fig.2. Trained sparse conjugate codebook for noisy envi-
ronment.

Since each excitation vector is the summation of two
sub-vectors, there are three possible combinations of sub-
vectors: 1) a sub-vector from each of the random compo-
nents, 2) one sub-vector from the random component and
one from the trained component, 3) a sub-vector from each
of the trained components. The coder selects the most ap-
propriate combination by closed-loop analysis for type of
speech, noisy or clean. We expected combination 1 to be
used for noisy speech and combination 3 for clean speech.
However, the proportion of each combination was as fol-
lows: for clean speech, combination 1: 14.0%, combination
2: 46.2% and combination 3: 39.8% and for noisy speech,
combination 1: 14.2%, combination 2: 46.6% and combi-
nation 3: 39.2%. Combination 2 is selected the most often.
The random component is useful for both clean speech and
noisy speech. The new sparse codebook can handle vari-
ous speech conditions by selecting the sub-vector from each
component.

5. TRAINING THE SPARSE
CONJUGATE CODEBOOK

The sub-codebooks are trained by the generalized Lloyd al-
gorithm. Each sub-codebook is trained alternately. While
one is being trained, the other is fixed. This section de-
scribes the procedures for training one sub-codebook.

The training algorithm alternately iterates two pro-
cesses. One process first determines the code of the fixed-



shape codebook for a target vector, then for all frames ac-
cumulates the target vectors, the reconstructed speech, the
gains, and the impulse response matrices. The target vec-
tor is generated by subtracting three vectors from the input
speech; the three vectors are the zero input response from
the previous frame, the synthesized output from the adap-
tive codebook, and the synthesized output from the other
sub-codebook. The other process determines the trained
excitation vector from these accumulated vectors. The first
process is identical to the fixed-shape codebook search in
an encoder. The second process generates the new excita-
tion vector that minimizes the distortion between the input
speech and the reconstructed speech for all frames. The
trained full-pulse excitation vector C; is given by

Ci=v Y (o;H,)"X;,where ¥ = () (¢;H,)" (9,H,) ™,
J j
2)
where X is the target vector, g is the gain, and H is the
impulse response matrix.

In the sparse codebook, the second process generates the
excitation vector that consists of a few pulses. The position
and amplitude of each pulse are determined sequentially;
that is, first position and amplitude of one pulse are de-
termined by minimizing the distortion between the input
speech and the reconstructed speech, and then the second
pulse position is determined while the first pulse position is
fixed. The amplitudes of the two pulses are redetermined
after the second pulse position has been determined. In this
manner, M pulse positions and amplitudes are determined
by minimizing the distortion between the input speech and
the reconstructed speech. The trained sparse excitation
vector C; is given by

C: = d’ Z(g; H(sub)J)Tx(!ub)j’

7
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where H,,; is the subset of the impulse response matrix
and X,up is the subset of the target vector. These pro-
cedures are similar to those in multi-pulse coding. If the
code of a random component is selected in the first process,
the accumulated vectors for the selected code are used in
training the trained component of the other sub-codebook,
because the excitation vector of a random component is
not trained.

6. PERFORMANCE OF TRAINED SPARSE
CONJUGATE CODEBOOK

The trained sparse conjugate codebook is evaluated by us-
ing an objective measure (segmental SNR). When the sub-
excitation vectors of each sub-codebook have N pulses, the
excitation vectors have 2N pulses. Figure 3 shows seg-
mental SNR versus the ratio of the trained component to
the random component for clean speech, when the sub-
excitation vector of each component has the same num-
ber of pulses. When the sub-codebook consists only of the
random component, it achieves a low score. As the ra-
tio of the trained component is increased, the segmental
SNR improves. When the sub-codebook consists only of
the trained component, it achieves a high score. However,
the fully trained codebook provides unsatisfactory quality
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Fig.3. Segmental SNR versus ratio of the trained compo-
nent to the random component in sub-codebook. Np is the
number of pulses in the sub-codebook.
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Fig.4. Segmental SNR versus the number of pulses of sub-
excitation vectors in the trained component. Nris the num-
ber of pulses in the random component.

for noisy speech, as is discussed in Section 4. Even if the
ratio of the trained component is 25%, the degradation is
small.

Figure 4 shows segmental SNR versus the number of
pulses of the sub-excitation vector in the trained compo-
nent for clean speech, when the number of pulses in the ran-
dom component is a constant and each component has the
same number of sub-excitation vectors (64 untrained exci-
tation vectors and 64 trained ones). Even if the number of
pulses in the trained component is 2 for various numbers of
pulses in the random component, the degradation is small.
When the number of pulses in the random component is
2 (Nr = 2), segmental SNR is almost as good as for five
pulses. The two-pulse sub-codebook achieves almost the
same performance as ones with more pulses.

7. EVALUATION OF SPEECH QUALITY

We evaluated the quality of the proposed coder by using
both the DMOS and the absolute (ordinary) MOS. In the
trained sparse conjugate codebook, the ratio of the random
component to the trained component was 50% and each
component had the same number of pulses (2 or 5).



Table 1

Differential MOS test results

(Each sub-codebook size is 128. The conventional trained codebook consists of 128 trained excitation
vectors. The trained sparse codebook consists of 64 untrained excitation vectors and 64 trained ones.)

Additional noise Original | ADPCM CS-CELP Improved CS-CELP
condition conventional trained trained two- trained five-
S/N ratio (dB) full-pulse codebook | pulse codebook | pulse codebook
Car noise (10 dB) 4.67 4.01 2.46 3.20 3.21
Car noise (20 dB) 4.79 4.17 3.15 3.83 3.88
Babble noise (30 dB) 4.90 4.30 4.11 4.29 4.49
Motor noise (10 dB) 4.69 4.01 2.53 3.02 3.29
Table 2 Absolute MOS test results

Original | ADPCM CS-CELP Improved CS-CELP

Condition conventional trained trained two- trained five-
full-pulse codebook | pulse codebook | pulse codebook

Clean speech 4.54 4.01 4.10 4.18 4.20
Car noise (10 dB) 2.11 1.92 1.58 1.84 1.90
Car noise (20 dB) 2.69 2.63 2.30 2.52 2.53
Babble noise {30 dB) 3.60 3.22 3.15 3.47 3.40
Motor noise (10 dB) 2.11 1.97 1.67 1.85 1.92

The source material consisted of 30 sentence-pairs. The
number of listeners was 24. The additional noise was car
noise, babble (office) noise, and motor noise; three S/N
ratios were used. The DMOS was rated in comparison
with the original signal on a 5-point degradation category
scale: degradation #5 was inaudible, #4 was audible but
not annoying, #3 was slightly annoying, #2 was annoying,
and #1 was very annoying. The absolute MOS of speech
quality was rated as excellent (5), good (4), fair (3), poor
(2), or unsatisfactory (1).

The subjective results are shown in Tables 1 and 2.
The absolute MOS shows that the quality of improved
CS-CELP is equivalent to that of the 32-kbit/s AD-
PCM for clean speech. Under environmental noise con-
ditions (S/N=10, 20, 30 dB), the sparse conjugate code-
book improves speech quality compared with the conven-
tional trained codebook, in which all excitation vectors are
trained. The absolute MOS shows that the subjective qual-
ity of improved CS-CELP with a sparse codebook is equiv-
alent to that of the 32-kbit/s ADPCM; however, in the
DMOS, the quality of improved CS-CELP is slightly worse
than that of the ADPCM.

In the DMOS tests, listeners tend to concentrate only on
the difference between the original speech with noise and
the coded speech. Therefore, the effects of noise reduction
by the postfilter of the coder, for example, are ignored.
However, in practice, telephone users do not compare the
original speech with the coded speech, but evaluate the
quality absolutely. Consequently, the MOS results reflect
the actual situation better than DMOS, while the DMOS
results are useful to identify the difference.

The absolute MOS shows that the listeners give low
scores even for the original speech with noise. The DMOS
results also show that the difference between the original
speech and coded speech becomes small, when the S/N ra-
tio increases. The quality of improved CS-CELP is better
than that of the ADPCM for a high S/N ratio (30 dB).
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We think that it will be uncommon to use a telephone in
such a very noisy environment (10 dB). We concluded that
the improved CS-CELP is useful for noisy environments.

8. CONCLUSIONS

We proposed an improved 8-kbit/s CS-CELP speech coder
that uses a trained sparse conjugate codebook. This code-
book consists of two sub-codebooks and each sub-codebook
consists of a random component and a trained component.
Each excitation vector consists of a few pulses. The trained
sparse conjugate codebook can handle various speech con-
ditions by selecting the sub-vector from each component.
Subjective tests (DMOS and MOS) indicated that this
codebook improves speech quality compared with the con-
ventional trained codebook for noisy speech. The MOS
showed that the quality of this new coder is equivalent to
that of the 32-kbit/s ADPCM for clean speech.
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