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ABSTRACT .

A procedure is presented where the conventional innovation
codebook approach of CELP coding is replaced by an
interpolative scheme. A generalized LTP-codebook constitutes
the basis for the interpolation. A pre-requisite to efficient
interpolation concerns establishing the neighboring vectors of a
given LTP entry. We discuss several working approximations
for establishing a suitable neighborhood concept.

By simulations we have found that the interpolative scheme
leads to 17-20 bits for the excitation coding of one block. In
addition to this, some 3-4 bits are required for block gain. A
standard CELP typically spends 25 bits or more for one block of
excitation coding. The subjective quality of our proposed coding
scheme compares favorably with standard CELP. In particular,
the interpolation improves the pitch-related properties giving a
less noisy subjective impression.

1. INTRODUCTION

The conventional arrangement of excitation coding in CELP is
based on a compromise whereby an attractive balance between
performance and complexity is achieved [2]. In VQ terminology,
the cascade of an adaptive LTP codebook and a fixed
innovation codebook constitutes a multi-stage encoder [1]. In
most applications the two stages have been searched one at a
time (OAT), where, for each block, the innovation coding is
investigated for a single LTP-entry only. In comparison with full
search, the OAT principle constitutes a major ease in
computational effort.

Future applications of speech transmission will require a
wide variety of coding methods, capable of working at different
bit-rates. In this work we are concerned with procedures that
operate in the range 4.8 to 6.4 kbit/s. Our goal is to improve the
coding efficiency by relaxing constraints on coding complexity.
In other words we are looking for higher subjective quality for
applications where an increase in computational burden can be
tolerated.

Random, sparse, multi-pulse, vector-sum and algebraic
coders are examples of innovation coding schemes that have
been utilized in conjunction with CELP-coders. To a surprising
degree these different architectures perform equally well, albeit
they have different properties in terms of complexity. To some
extent, the perceptual character of the schemes relates to the
structure of the innovation codebook; a random codebook often
gives a somewhat noisy impression whereas a pulse-like
codebook may be perceived as "hard” or "machine-like”.
Common to all innovation principles mentioned above is the
property that inter-harmonic noise may be a problem - in
particular when the pitch period is comparable to the length of
the blocks. For this reason some researchers have suggested
utilizing quasi-periodic innovations.

While we essentially motivate our alternative principle for
innovation coding on VQ theory (as elaborated on below) we
would like to comment that an interpolative innovation scheme
avoids enforcing a synthetic law for signal generation.
Moreover, we can utilize quasi-periodic “innovations” in a
natural way.

One ultimate arrangement of excitation coding is a single
stage encoder. In comparison with a dual-stage encoder, at least

three advantages appiy to a strict single stage coding of CELP
excitation, namely: i) an optimized set of vectors; ii) a possible
search gain (if all entries are evaluated) and iii) a bit-reduction
since the encoding of separate LTP- and innovation gains is
eliminated. Achieving all three advantages is in practice
difficult. Exhaustive search of codebooks in excess of say 15 bits
is not feasible for many applications and, hence, fast search
procedures become a necessity. However, the major problem
with a strict single stage encoder concerns an optimal frame-to-
frame design of an adaptive codebook.

The approach to excitation coding proposed in this paper is
based on an enlarged LTP-type of codebook cascaded with a
simple interpolation scheme to provide corrections to the basic
vectors. The architecture can be seen as a dual stage encoder
where both stages are adaptive.

An interpolation scheme yields a second-stage codebook
such that each first stage vector has a unique set of correction
vectors. In VQ terminology this principle is referred to as cell-
conditioned coding, c.f. [6]. Cell-conditioned dual-stage coding
can, in theory, operate arbitrary close to the performance of
(optimal) single stage coding. While the theoretical advantage of
cell-conditioned coding is indisputable, it is in practice difficult
to benefit from the full potential of this principle; in particular
for cases where the first stage is adaptive and, thus, time-
varying. However, in comparison to a conventional dual-stage
arrangement — where correction vectors are duplicated in an
identical fashion across first-stage vectors — a suitable cell-
conditioned approach normally outperforms conventional dual-
stage coding.

In summary we exploit points ii) and iii) above, while our
attempt at reaching the advantage of i) is suboptimal.

2. THEORY

2.1 Framework
Let the coding of the speech signal be arranged in frames of N
samples; each frame further sub-divided in blocks of N;
samples. We accept the conventional perceptual weighting filter
W(2) = A(2)/ A(z/ p) in evaluating an appropriate distortion D
between a speech block {x(n)} and its encoded correspondent
{xX(n)}. The filter A(z) is an M:th order polynomial determined
by a conventional LPC-analysis. Appropriate encoding of the
LPC parameters can be achieved with 20-25 bits/frame [3, 4, 5].
In this contribution all simulations reported on below have been
performed with unquantized filters A(z). Moreover, for the
simulations discussed below we have selected the familiar values
N,=160, N, =40 and M =10, c.f. [2].
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Figure 1. Overall encoder structure.

We denote the codebook of excitation vectors ¢ = {c,}*,. For
each block, the synthesized signal is achieved by feeding the
production filter 1/ A(z) with a gain-scaled excitation vector ac;.
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The index { is selected for each block to minimize the perceptual
distortion D. In our further discussion we refer to the speech
block in the weighted domain by x’ and, likewise, by ¢/ we
denote the excitation signal in the corresponding domain. In
other words, ¢; is ¢; filtered by 1/ A(z/ g). In this notation we
can write the distortion D as D =[x’ - acf[ﬁ.

2.2 Principles of the Excitation Codebook

The success of CELP-coding relies to a great extent on the
efficient usage of an adaptive LTP codebook. An LTP ensures
that the quasi-periodic nature of speech is exploited in the coding
process. Consequently, we employ the history of coded exci-
tation as the basis for the generation of the codebook C. By D we
denote a set of vectors {d j}f=l drawn by sliding a N, samples
wide window over the immediate past of the quantized
excitation signal.

2.2.1 Fractions and Delay Range

In conventional CELP, L=128 vectors are drawn corresponding
to a delay of 2.5 to 18.5 ms to generate D. In several improved
CELP schemes fractional delays are utilized in order to gather
L=256 vectors from the same region of delay, cf. [7]. We
performed several preliminary experiments concerning fractions
and an extended delay range. Both methods increase the rate,
and thus the performance, of the codebook .

Fractional delays The delay resolution was varied from 1 to 1/8
sample. SNR values after the first-stage codebook are presented
in table 1 below.

In ing the ran lay We increased the delay range to
256, 512 and 1024 samples, while keeping the lowest delay at 20
samples. The results are presented below in tabie 1.

In order to evaluate the performance of the first stage only —
without the influence of a particular innovation mechanism —we,
in the experiment listed in table 1, utilized unquantized vectors
in the codebook D.

delay Delay range (in samples)
resolution 128 256 512 1024
1 1] +0.33_ [+0.56 |0.77
0.5 +0.55 +0.86 | +1.07 [1.27
0.25 +0.72 +1.01  [+1.22 [1.43
0.125 +0.79 +1.08 [+1.29 |[1.51

Table 1. Improvement in SNR relative a standard L=128, -sample-
resolution LTP codebook. Values are listed for different resolutions
and ranges of delay. The results have been compiled for an
unquantized codebook D.

The main conclusions from the experiments are:

I) Increasing the delay resolution to better than 0.5 sample
gives low gains.
IT) Increasing the range of delay is a competitive method.

We have also experimented with non-uniform resolutions, and
found that a good compromise is to employ an increased
resolution for the lower delay values only.

Relative
usage
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Figure 2. Relative usage of various delays for an LTP-type of

codebook D. Based on 20.000 sub-blocks of male and female speech.

Figure 2 above depicts the relative usage of various delays when
the operative range is 2.5 to 80 ms divided between 737 indices
employing unequally large fractions. For short delays fractions
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of 4 were utilized while at long delays a decimation of 4 was
selected. For intermediate delays we selected intermediate values
for the fractions. We stress that the figure illustrates that long
delays are utilized in reasonable proportion. By a suitable
fractional profile we can make all the first-stage codewords to be
of comparable probability. Listening tests confirmed the
objective advantage of an enlarged delay range; we did not, for
instance, perceive unwanted effects due to "pitch halving".

2.2.2 Building the Basic Codebook

With the idea of interpolating in a basic codebook D it is not
wise to build D on past signals only. Even with an extended
delay range, the immediate past captured in D may during
transients such as voicing transitions provide a far from optimal
model of the current signal block. Hence, we have further
extended the set D with a small amount of random as well as
impulse based vectors. Qur experiments indicate that on the
order of 10-25% of random and impulse signals is appropriate.
In several of our experiments we have employed a grand total of
1024 entries in the basic codebook D. A typical mixture has been
700 delayed vectors, 100 impulses and 200 random waveforms.
We have also successfully replaced N, of the random vectors in
D with the eigenvectors of the impulse response of the filter
1/ A(z/ p).

2.3 Establishing a Neighborhood

For the interpolation in a basic codebook elaborated on below,
we are interested in establishing the neighborhood A, of each
entry in D. In our scheme we interpolate from one entry to its
neighbors only.

The neighborhood #; is a list of indices of entries d, that
are close to the vector d; in some sense. Since the selection of
the appropriate excitation vector is performed in the weighted
domain we, in fact, should look for properties in the weighted
domain. The relevant measure concemns the properties of vectors
d; and d;; the weighted domain correspondents to d, and d,.

We have investigated several procedures for establishing
A(;- One natural principle is to utilize the Voronoi neighbors, i.e.
declaring two first stage vectors as neighbors if they share a
common face in the Voronoi partition of ©’. This idea is
however not really practicable since establishing the Voronoi
partitioning is a computationally expensive task; requiring a
computational effort several magnitudes larger than acceptable.

The concept of Gabriel neighbors is closely related to the
one of Voronoi neighborhood. Two first-stage vectors are
declared Gabriel neighbors if their mid-point lies on the
hyperplane of the Voronoi partition of D’ that separates the two
vectors. Formally, if

H(dy +d))/2~d; IP<I(d; +d))/2—d} 1P

then d, and d, are declared Gabriel neighbors. Consequently, a
list of Gabriel neighbors always constitutes a subset of the
corresponding Voronoi list. Finding a list of Gabriel neighbors is
computationally expensive, but the effort is tolerable.

In addition to the geometrically oriented principles of
neighborhood, we have experimented with code-oriented
schemes for defining a suitable neighborhood. In particular we
have employed the idea of Hamming-1 neighborhood. Two
vectors d, and d, are declared Hamming-1 neighbors if their
indices k and i differ in exactly one bit. Independent of how the
set of first-stage vectors are indexed this principle leads to a
symmetric structure in the sense that all entries have the same
number of neighbors, namely log, L Moreover, one particular
entry appears exactly log, L times in a list A;. To be more
explicit, with a 10 bit first-stage codebook all entries have
exactly 10 Hamming-1 neighbors. This symmetric property is a
contrast to that of both the Voronoi and the Gabriel principle
where the number of neighbors varies from vector to vector
(typically involving a considerably larger number of neighbors).



In working with Hamming-! neighbors we have normally
relied on the vectorial sorting described in [S] in order to bring
the Hamming distances in correspondence with the geometrical
distances. The particular procedure described in [5] gives a fast
and adaptive access to the neighborhood list. The overall
computational complexity is propomonal to L(log, L)%

Finally, we have experimented with non- adapnve procedures
for establishing a neighborhood. We have been surprised to find
these non-adaptive schemes to be only slightly inferior to the
adaptive ones described above. One simple non-adaptive
technique is to use the Hamming-1 concept for the natural
ordering of the first stage vectors; first-stage vectors are indexed
according to their LTP-delay.

Encouraged by the nice performance of simple non-adaptive
rules for neighborhood we, by trial and error, developed an ad
hoc rule for ten neighbors. Here, the neighborhood is set up by
two vectors at +1 samples of delay, another two at £3 samples of
delay, one at twice the delay and so on. We refer to this principle
as "best ad hoc rule" below.

2.4 Comparing Different Neighborhood Principles

The choice of neighbor principle is, obviously, of importance for
the success of the interpolation. We have briefly commented on
the performance of the schemes when introducing them above.
Table 2 lists formal scores in terms of innovation gain for the
methods in our study. In order to give all principles a fair and
equal comparison, we used an unquantized codebook 2 in this
experiment, i.e. all methods operated on one and the same set of
first-stage vectors. We also emphasize that we here only
evaluated and report the innovation gain of the winning first-
stage entry, i.e. no tree search coding was applied.

Ten vectors from the (unquantized) codebook P were
selected with the neighborhood principles listed. The
performance was evaluated for a system with 10 oprimum
weights, to separate the effect of the weight quantization from
the vector selection process. Since no quantization occurs, the
results constitute upper bounds for the performance of the
methods.

Neighbor concept SNR [dB]
Random 3.7
Sorted Hamming-1 3.9
Natural IA Hamming-1 4.0
Best ad hoc rule 4.2
Gabriel 3.6

Table 2. SNR values of innovation gain for different sets of neighbors.
Unguantized weights. Unquantized first-stage codebook.

By random in table 2 we denote a random selection of
neighbors. The sorted and natural index assignment Hamming- 1
principles are listed next, followed by a non-adaptive ad hoc rule
(briefly discussed above). The Gabriel neighborhood is tabulated
last and performs worst. Since the number of Gabriel neighbors
is time-varying, this principle may suffer from our truncation of
the neighborhood list to exactly 10 neighbors in all occasions.

The results of adaptive and non-adaptive schemes are, in
general, close. When performing a full search with all first-stage
parents, 2 dB or more of tree search gain is observed for all
methods except the Gabriel approach. The Gabriel neighborhood
leads to a small tree search gain, close to non-significant.

In the next section we address the problem of how to
quantize the weights. We do so well aware that an interpolation
employing 10 neighbors can give an innovation gain far in
excess of the 2-3 dB that is required for high quality speech.

3. INTERPOLATION
The set D of first-stage (generalized LTP) vectors defines a
Voronoi partition of the space spanned by the x’ vectors. In
extending a (close to optimal) codebook it is in general desired
to place vectors in accordance with the first-stage Voronoi
partition. Unless this property is met, the extension will tend to

19

give results close to that of conventional (random) innovation
coding.

Our straightforward way of extending a codebook D is to
consider vectors ¢, formed by a weighted sum of two or several
entities in P. In mixing two vectors a reasonable choice is
¢, =d, £(d, -d;)/2. Thls generates a point half way in
between d “and’ 'd,, and a complememary point at the same
distance from d, in the opposite direction. If d; and d, are
Gabriel nelohbors (and are equally probable) then’the half way
point is not only a likely point but also locally optimal in a mean
square sense. Interpreting d, —d; as an innovation vector there,
hence, exists a natural innovation gain of +0.5. We may also
distinguish adding and subtracting d; —d, in the way that the
former constitutes an interpolation, whlle the latter acts as an
extrapolation since it can generate points outside a closely
scattered set D.

Figure 3 below illustrates the Gabriel extension rule for a 2-
dimensional codebook. Here, the points c; -d’ +(d; -d;)/2
are used to extend a basic codebook — we thus only obtain
interpolation. For ideal cases of optimized basic codebooks, this
extension rule gives very good results; close to the one of the
global optimum. The Voronoi regions of the extended codebook
become congruent with the Voronoi regions of the basic
codebook.
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Figure 3. Two-vector interpolation; extending a codebook by the
Gabriel points. Left: a basic codebook. Right: the extended codebook.

While the Gabriel points are close to optimal for an
optimized first-stage codebook it is an open question if this
extension rule has the same nice properties when employed for a
generalized LTP codebook as the first-stage codebook. In order
to test the rule we used two neighborhood principles, namely i)
Gabriel neighbors and ii) Hamming-1 neighbors given the index
assignment of the vectorial sort discussed above.

Depending on the speech material, a generalized LTP
codebook D of 10-bits gives a segmental SNR of 6-7 dB in the
weighted domain when cascaded with a conventional (large-
sized) second-stage codebook. For both of the Hamming-1
neighborhood principles (and a set A(; of 10 entries) the two-
vector interpolation scheme yields an innovation gain of 0.7-0.9
dB, also in the weighted domain. In terms of bits for the
codebook (, this amounts to a total of 13.3 bits. When instead
using the Gabriel neighbors we obtained a similar 0.7-0.9 dB of

“innovation gain”. The number of Gabriel neighbors proved to
be highly variable; the mean was approx. 30 neighbors.
Occasional frames, however, proved to have several hundred
vectors as Gabriel neighbors to the winning first-stage vector.
For coding purposes, utilizing the Gabriel neighbors (or the
Voronoi neighbors) is not attractive. It is not clear how to design
a fixed rate coding scheme that exploits the variable nature of
the number of Gabriel neighbors.

In passing we comment that a 0.7-0.9 dB of innovation gain
is not sufficient for reasonable quality. In practice, the two-
vector interpolation mechanism leads to a complete coder break
down when used as the single innovation generator, The history
of coded excitation cannot be driven by interpolating between
two neighboring vectors only.

3.1 Interpolation with Several Basic Vectors
In order to work properly in extending the generalized LTP
codebook D we have found that the interpolation must involve a



subset of at least 3, or, preferably 4 or more vectors from the
neighborhood 2(;. For the four-vector case, we use

¢; =vod;, +7,(d; —d, ) +y,(d;, -d, )+ v3(d;, —d,)

where d; , d;, and d; are three neighbors to d; . Similarly for
the three-vector case we use

¢ =Yod;, +7,(d; —d; ) +7,(d;, ~d, )

o

Figure 4. Three-vector interpolation — three vectors from the
generalized LTP-codebook D are weighted to form a vector c.

We have experimented with various designs for the set of
interpolation weights I = {y*’} where v =(7,,7,.%,,7;)" (and
Y=(Y0,7:,7,) for the three-vector case). We have tested and
evaluated several schemes along the lines of the two-vector case.
In addition we have compared these with trained weighting
codebooks using the familiar LBG-algorithm. We have tested
both the Gabriel neighborhood concept and the Hamming-1
concept. In all cases the Hamming-1 neighborhood proved
superior in performance.

Specifying 2 neighbors from a neighborhood of 10 vectors
requires log,(10-9/2) = 5.5 bits whereas a specification of three
neighbors from the same list requires log,(10-9-8/6) ~ 7 bits.

In interpolating three vectors, a logical choice is the four
combinations of Iy =(1/3, £1/3, %1/ 3)". For four vectors the
corresponding 8-setis I, =(1/4, £1/4, £1/4, +1/4)".

Table 3 below lists the relative usage of each of the
interpolation rules. In the tabulated experiment all alternatives
were available of selecting either zero, one, two or three vectors
from a set of ten neighbors. This amounts to a total of 176=1+10
+45+120 subsets. The most frequently used rule is the perhaps
most reasonable one, namely ¢; = d, +d, +d, +d, )/ 4.

Number sign sequence of weights in ¥
of neigh. | +4++ | +-++ | ++-+ | ot | 444 | +do | 44ee | +omm
0 12
1 62 174
2 415 501 480 144
3 1690{ 11111 1056 715] 840{ 687| 524| 886

Table 3. Relative usage of the interpolation rules. Based on the non-
silent parts of 10.000 subblocks.

When comparing the above 176 interpolation rules with
LBG-trained weighting codebooks (of equal size) we have found
only smail differences in performance. Hence, we conclude that
the structured interpolation rules are close enough to the
optimum to be used in our final design.

4. TREE-SEARCH GAIN
For an arbitrary two-stage codebook arrangement there, in
general, exists a tree-search gain. Only by confining the second
stage to generate vectors well within the Voronoi region of the
parent vector, this tree-search gain becomes negligible.

With a cell conditioned approach, as our interpolation
scheme, we have a possibility to control the proportion of the
second-stage vectors that reside outside the parent Voronoi
region. Interpolating with Gabriel neighbors proved to give
exactly the advantage we were looking for; an OAT search gives
results very close to those of a full search of the entire codebook
C. However, all other neighborhood concepts proved to have a
significant tree search gain. Unfortunately, utilizing the Gabriel
neighbors was inferior in terms of performance (when used in
conjunction with a LTP-codebook) to all other neighborhood
principles we have tested. We interpret this result in the
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following way. While the LTP-concept is powerful, the
associated Voronoi partition is irregular enough to prevent a
successful direct exploitation of its inner structure.

4.1 Search Methods

In our simulations we have employed a true equivalent of full
search of all entries in the excitation codebook . For each first
stage (parent) vector we have evaluated an upper bound for the
performance of the interpolation with the particular neighbors of
the parent. The leafs of the coding tree (i.e. the explicit
interpolation rules) have been evaluated only for parents with a
bound above the score of the best found fully quantized leaf.
This principle reduced the overall computational load to 15 %.
For a real-time application the computational effort is still high
and a standard pruning of the tree {(based on the first-stage
scoring) would probably be a necessity.

5. RESULTS

At the point of writing, we have evaluated the subjective per-
formance of the interpolative scheme in informal listening tests
only. At a total of 19 bits in the extended codebook ¢ (plus 3 bits
of block gain) we obtain high quality speech, preferable to that
of a conventional CELP with up-sampling operating at 25 bits
for excitation coding. The somewhat noisy character of standard
CELP is distinctly reduced with the interpolative procedure. On
the tested speech material, the segmental SNR of the
interpolative scheme is 0.3-0.4 dB higher than that of
conventional coding.

At a total of 20 bits in the extended codebook C (plus 4 bits
of block gain) we obtain a quality distinctly is preferable to that
of a VSELP coder at 7.95 kbit/s. Table 4 below lists segmental
SNR values for our interpolative scheme, referred to as cHELP
(Coded History Excited Linear Prediction). For comparison we
have included SNR values of the VSELP coder (at 7.95 kbit/s).
On the average, over a larger speech material, the cHELP coder
has a segmental SNR 0.5 dB higher than that of VSELP.

Coder | male | fern | child | male | fem | child | male | fem | child
c¢HELP | 104|134 11.4 | 122 {130 13.7 | 13.4 | 13.6] 141
VSELP 1021129} 109 | 113 [126113.0| 12.6 | 135 136

Table 4. Segmental SNR values for 9 different voices. The HELP coder
operates at 24 bitsisubblock utilizing the Hamming-1 neighbors of a
sorted LTP.

6. SUMMARY
We have presented a family a methods for replacing the
innovation codebook of CELP with interpolation in a
generalized adaptive LTP-codebook. Using 26 bits per frame for
the spectral parameters and another 6 bits for frame gain our
proposed scheme can be coded at 6.4 kbit's yielding a subjective
quality well in excess of the familiar VSELP coder.
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