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ABSTRACT

This work analyses the feasibility of electrocardiogram

(ECG) biometrics using signals from a novel single arm

single-lead acquisition methodology. These new signals are

used and analysed in a biometric recognition system in veri-

fication mode for validation of a person’s identity enrolled in

a system database. The algorithm used for recognition in the

proposed system is the Autocorrelation/Linear Discriminant

Analysis (AC/LDA), which is combined with preprocessing

stages tuned to the characteristics for ECG from the single

arm. The signal is collected from 23 subjects in three sce-

narios and performance of the proposed scheme is evaluated.

Considerably low Equal Error Rate of 4.34% is obtained

using the described method, establishing the utility of these

signals as viable candidates for ECG Biometrics.

Index Terms— ECG, single arm, single lead, feasibility,

AC/LDA, biometrics, equal error rate, verification

1. INTRODUCTION

Recognition of individuals using biometric signatures has

been an area of major interest to researchers in the past

decade as they have many advantages over traditional meth-

ods of recognition. Chief among them is that they posit a

framework which uses the essence of the user to recognize

her. This approach to recognition is closer to the actual person

than indirect means such as a password, which is memorized

by the user who wishes access to a system. Another advan-

tage of using certain biological signals for biometrics is that

they are almost universally present. Hence, modalities like

fingerprint, face and iris have been successfully used in prac-

tical recognition systems for security. However, these aspects

also raise concerns of various kinds of attacks which can

compromise systems that use biometric security. An example

is where one tries to impersonate the original signal. Also,

privacy concerns are important in such systems because once

a biological identity is stolen, it is usually hard to replace.

With these perspectives, the electrocardiogram (ECG)

signal has been proposed as a modality for biometrics [1, 2].
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An ECG is a trace of the electric activity of the heart ob-

tained through a configuration of electrodes placed on the

body at specific locations. It is a quasi-periodic signal with

pulses corresponding to cycles of the body’s cardiac func-

tions. Biometric recognition using ECG consists of two

broad approaches, namely the fiducial points dependent and

the non-fiducial methods. Fiducials are specific points on the

ECG heartbeat which can be used to extract features based on

its temporal and amplitude characteristics. Approaches using

fiducials are abundant in literature such as [1, 2, 3, 4, 5].

Notably, [1, 2, 5] report 100% identification accuracy using

fiducial methods on modestly sized databases using conven-

tional electrode configurations whereas [3] reports 99.6% and

88.2% identification accuracy using 2-lead fusion and 1-lead

respectively. Non-fiducial methods used in [6, 7, 8, 9, 10]

do not rely on specific points on the ECG curve but rather

use statistical characteristics. For e.g., autocorrelation, which

contains the same information as fiducials blended holisti-

cally is used in [6]. The method employed in our work uses a

non-fiducial approach because of the poor quality and lack of

clear fiducial points on the acquired single-arm ECG signal.

The existing methodology in all literature has as yet re-

quired sensors to be placed on either side of the body (e.g.

fingers from both hands). This requirement becomes a ma-

jor problem in user friendly applications as both sides of the

body have to be in contact with the sensors. It is highly prefer-

able instead to obtain ECG from only a single side of the

body. This would pave the way for comfortable and user-

friendly biometrics, applicable in devices such as a smart-

watch. Placement criteria for the electrodes is key to obtain-

ing a usable ECG signal and is based on both empirical ob-

servations and biological facts such as the axis of the heart

and location of nodes. Recently, 1-lead ECG has been used

in [11, 12, 13, 14], obtaining ECG from fingertips whereas in

[3], both 1-lead and 2-lead signals obtained from Holter mon-

itoring are used. To the best of our knowledge, this work is

the first to use single-lead signals from only one side of the

body, i.e. the left arm, for ECG biometrics.

In this paper, we propose a novel approach of using

single-lead ECG signals from the upper left arm for bio-

metrics. We call this the Single Arm ECG (SA-ECG). The

SA-ECG signals were collected and the feasibility of this



approach was analysed using the AC/LDA algorithm in three

different case scenarios or posture-states of human beings.

These results are compared with reported performances of re-

cently proposed methods which also use 1-lead ECG signals

such as Zhao et al. [11], Lourenco et al. [12] and Silva et

al. [14], all of which use Fingertips ECG (henceforth called

FT-ECG). As our work on SA-ECG is new in that there is no

other SA-ECG database, we believe these works using single-

lead signals provide reasonable preliminary comparisons for

our system’s performance.

Hannula et al. [15] showed that it was possible to get ECG

from a single arm. Their work involved comparison of regular

ECG measurement methods with their single-arm single-lead

system. Also, their measured heart-rate correlated with the

actual heart-rate. Later, Yang et al. [16] confirmed the ex-

istence of SA-ECG and also showed that it was better to use

electrodes on the upper arm of the user. The user was as-

sumed to be at rest to reduce EMG interference. It was also

noted that SA-ECG was a very noisy compared to FT-ECG

and other conventional ECG signals. Plessey Semiconductors

[17] have also shown a method of SA-ECG acquisition using

their EPIC sensors confirming the sensor location.

In these works, the signals were not studied for use in bio-

metrics, which is the motivation for our work. Additionally,

SA-ECG is extremely convenient to acquire with access only

needed to a single location on the body. This is an important

advantage in commercial biometric applications where com-

fort of use is key to success of new technology. Our work in-

cludes collection of SA-ECG signal in various scenarios and

evaluation of verification performance for biometrics using a

system described in the next section.

2. SYSTEM MODEL AND METHODOLOGY

For analysing the distinctiveness of SA-ECG from upper left

arm among different individuals, the Autocorrelation/Linear

Discriminant Analysis (AC/LDA) method is used followed

by a classifier for comparison. Initially in the enrolling phase,

SA-ECG signals are recorded from users and processed

through various stages before using AC/LDA as described

in detail in this section.

2.1. Experiment Process

For acquisition of ECG signals from the arm, we used a 1-lead

Vernier ECG sensor with Kendall AgCl gel electrodes. Each

recording was 120 seconds long with a sampling frequency of

200Hz. The SA-ECG was collected from the upper left arm

as shown in Figure 1(a). The electrodes’ location was empir-

ically determined to get the best signal quality i.e. least noise

and highest amplitude of the ECG signal. Note that though

multiple such configurations exist at the upper left arm, the

same electrode location was used for all subjects.

The data was collected in a single session scheduled at the

Biometrics Security Lab at the University of Toronto through
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Fig. 1. (a) Electrode placement for SA-ECG acquisition: A

and B are the two electrodes, (b) SA-ECG from a subject(top)

and preprocessed signal(bottom)

the participation of 23 subjects. Appropriate ethics approval

was obtained prior to the collection process. The volunteers

were all in the age range of 18-30 years and had no his-

tory of heart-related disorders. ECG was collected in three

cases/postures for each subject:

1. Sitting posture, subject at rest

2. Standing posture, subject at rest

3. Sitting posture, at rest, after 20 seconds of exercise

These three cases were chosen as they represent most pos-

sibilities of posture and state for human beings at rest. In this

work, the three cases are analysed separately for biometric

verification. Though the enrolment signal is 120s long, note

that the actual procedure would require only a small duration

signal equal to the window size chosen in Section 3.

2.2. Preprocessing, Segmentation and Outlier Detection

Since the SA-ECG is comparatively noisier than the FT-ECG

or traditional lead ECG, the preprocessing stage becomes cru-

cial. Apart from typical noise such as baseline wander and

power-line interference, there is contact noise from the elec-

trodes and EMG interference due to the biceps and triceps

muscles. For these, we use a zero-phase butterworth band-

pass filter whose passband and order are determined empir-

ically depending on the signal characteristics (see Table 2).

Figure 1(b) shows an example of this process.

Next, we segment the signal into overlapping windows.

This is done blindly to the location of ECG heartbeats, mak-

ing this method non-fiducial. However, the window duration

is chosen long enough to contain several heartbeats. Then

an outlier removal process removes the noisy windows which

survived filtering. This is done using Euclidean distance by

comparing the windows with the mean window using a vari-

ance dependent threshold. This stage gets rid of the windows

which have sharp peaks and artefacts that are due to contact

noise and movement. This is important as bad windows can

produce anomalies that propagate to the learning phase of the

system, i.e. the LDA.



2.3. Autocorrelation - Linear Discriminant Analysis

The AC/LDA method is a Non-Fiducial method successfully

used in ECG biometrics that uses the autocorrelation of the

ECG signals as a feature vector for classification (described in

Agrafioti et al. [18]). It does so by projecting the AC feature

vectors to a new space with lower dimensionality [19]:

1. Normalized autocorrelation: Each window is processed

to calculate the normalized autocorrelation.
2. Dimensionality Reduction: Using the LDA Algorithm.
3. Classification: Using projections from the LDA, we com-

pare the testing windows with those in the database.

The normalized autocorrelation (AC) is calculated as:

R̂xx[m] =

∑
N−|m|−1

i=0
x[i]x[i +m]

R̂xx[0]
(1)

where x[i] is the window in question. N is the length of the

window and m is the time lag with m = 0, 1, . . . , (M − 1)
where M is the total number of time lags. This is chosen to be

low, i.e. M << N , as the useful discriminative information

in the ECG AC is concentrated in the first few time lags [18].

2.4. Comparison Mechanism (k-NN Classifier)

After the AC feature vectors are projected to the new fea-

ture space using LDA, they are classified using a k-Nearest

Neighbour classifier with Euclidean distance as the similarity

metric. Here, k is chosen empirically optimizing for perfor-

mance and we found it to be k = 4 for our system. After

comparison with the windows in the enrolment database, we

have either a False-Acceptance or a False-Rejection for cases

of error. Their probabilities give the FAR and FRR measures

which are used for performance analysis in Section 3.1.

3. EXPERIMENTAL RESULTS

The three cases as described in Section 2.1 are analysed

in verification mode. The SA-ECG signals are noisier and

of much lesser amplitude than FT-ECG signals of similar

database size (23 subjects) used by Zhao et al. [11]. These

two signals are compared in Figure 2(a,b) where the SA-

ECG is from the ‘sitting at rest’ case. In Figure 2(a), note

that the amplitude of SA-ECG is at (−8.45)dB compared to

the FT-ECG. Lower quality of ECG signals result in worse

verification performance. In (b), the amplitude spectrum of

both signals is compared, revealing the gap in signal strength.

Also, FT-ECG spans over a wider range of frequencies (0.5Hz

to 40Hz) compared to the SA-ECG that has significant com-

ponents in the 0.5Hz to 25Hz frequency range. Hence, the

preprocessing stage for SA-ECG uses a passband which is

suited to these characteristics.

Figure 2(c) shows the autocorrelation of windows of a sin-

gle subject while ‘standing’ after preprocessing and outlier

removal. Significant consistency in the AC curves of differ-

ent windows belonging to the SA-ECG can be seen. This is

Table 1. Mean ± deviation of number of outlier windows per

subject in collected SA-ECG database

Case
Total Number of

Windows outlier windows

Sitting 58 7.94± 5.60
Standing 56 9.65± 7.87

After-exercise 58 10.5± 7.00

Table 2. EER and corresponding system parameters.

Coloured cells indicate lowest EER for each case.

Filter Passband
Window Size

Case
4 sec 5 sec

[0.5, 15] Hz 16.67% 8.17%
Sitting

[2.0, 15] Hz 11.34% 11.11%

[0.5, 15] Hz 13.04% 14.63%
Standing

[2.0, 15] Hz 4.34% 10.38%

[0.5, 15] Hz 10.56% 14.98%
After-exercise

[2.0, 15] Hz 22.22% 16.67%

encouraging as this translates to low variability for the fea-

ture vector within a single class in LDA. Note that the spread

of AC curves of the windows from the median (dark) can be

reduced by increasing the stringency of the outlier detection

phase. However, this also reduces the number of windows

surviving the outlier removal operation. We also know that

the optimality of projection matrix from LDA is improved

with more training data, i.e. more windows. Thus, a trade-

off is in place and the stringency of outlier detection has to be

tuned empirically based on the database to get best results.

3.1. Performance Analysis

For the performance analysis, SA-ECG is obtained from 23

subjects, each 120 seconds long. Empirically, we found that

a preprocessing stage with passbands in Table 2 using a but-

terworth filter of order 4 led to best performance. We adopt

a 2-fold cross validation strategy by using 60s of each signal

for training the AC/LDA and the rest as testing data for ver-

ification. The signal is segmented into overlapping windows

having a 2s overlap. Then they are passed through an outlier

detection stage as described in Section 2.2. Table 1 character-

izes the number of outlier windows caught, for each case, at

best performance. For the window ACs, M is chosen to be 50

which corresponds to 250ms.

The performance analysis was done using the Equal Error

Rate (EER) as the performance metric, i.e. the error at which

the FAR is equal to FRR. The results and system parameters

used are shown in Table 2 with best EERs highlighted. In

Figure 2, the FAR-FRR results are shown for the three dif-

ferent cases. Of particular interest is the EER for ‘standing’

case (shown in Figure 2(e)), which is obtained to be 4.34%

using the AC/LDA - extremely promising for SA-ECG bio-

metrics. Also, SA-ECG from the ‘sitting posture without ex-

ercise’ case (shown in Figure 2(d)) has slightly higher but still

considerably low EER of 8.17%. Both of these are lower than
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Fig. 2. Signal Characteristics of SA-ECG signals and performance of system in various cases

the 8.68% and 13.0% obtained for FT-ECG in [11, 12], but

higher than [14]. For the ‘sitting posture after-exercise’ case

in Figure 2(e), we obtain an EER of 10.56%. These veri-

fication performances are encouraging mainly because they

correspond to low quality SA-ECG compared to better qual-

ity FT-ECG signals. Thus, comparisons with [11, 12, 14] are

valid because they essentially use the same signals with bet-

ter quality and similar database sizes (except [14], who use

a bigger database). Hence, we observe promising results us-

ing the AC/LDA for low quality SA-ECG signals in biometric

verification mode.

Note that the ECG signals used in this performance evalu-

ation were pre-screened for quality. There were 3 recordings

each in ‘sitting’ and ‘after-exercise’ SA-ECG which had very

poor SA-ECG with considerable noise and were discarded

while evaluating the system performance. Without this pre-

screening, it was observed that we still obtained an EER of

4.34% for the ‘standing’ case whereas the ‘sitting’ and ‘after-

exercise’ cases worsened to 11.07% and 12.06% respectively.

Thus, pre-screening is important during enrolment, and in a

practical scenario, the administrator would re-enrol the users

with poor signals after pre-screening them.

3.2. Discussion

The best result in verification performance is in the case when

users are standing. This is interesting as it was also observed

during experimentation that SA-ECG while standing has a

higher amplitude than the other two cases. Hence, a higher

signal to noise ratio leads to a better EER, as expected. This

is also supported by the fact that the heart works harder while

standing up than while sitting down. SA-ECG from ‘sitting

after exercise’ has lower performance due to considerable

variability in ECG just after a period of exercise during the

recordings, when the heart comes back to a normal heart rate.

Hence, the dissimilarities in enrolling and testing windows

correspond to the errors in classification.

Situations in which the proposed system can fail are: (a)

Noisy acquisition methods such as using dry electrodes or

non-conductive skin. (b) Users with non-existent ECG in the

upper arm. This is possible but rare, as we encountered only

a few such users. (c) Movement - the system can be adversely

affected by contact noise and non-uniform EMG interference

from muscles. While this scenario has not been studied in

this work, the biometrics task in such cases is non-trivial. The

performance was also not studied for users with arrhythmias,

and this can be a subject of future research. Similarly, the ef-

fects of psychological changes in the user and their induced

changes in the heartbeat are also not considered here, which is

a topic of further study. The small database size is an area to

improve on through further data collection of SA-ECG. How-

ever, the present work clearly supports the use of SA-ECG as



a biometric modality.

This work establishes the presence of ECG signals of suf-

ficient quality to be feasible for biometrics at the upper arm

through three cases that cover a broad range of scenarios in

day to day life. The results are encouraging as this offers a

comfortable and practical way over methods described in lit-

erature, all of which need both sides of the user’s body to be

in contact with sensors. Hence, the system also provides a

highly customizable way of implementing wearable biomet-

rics solutions using the system parameters tuned to specific

situations and signal characteristics.

4. CONCLUSION

In this paper, the feasibility of single-arm single lead ECG for

biometrics has been studied and established. The signals were

acquired from 23 subjects and a customizable system based

on the AC/LDA algorithm tuned to Single-Arm ECG signals

was applied for the performance analysis. An Equal Error

Rate (EER) of 4.34% resulted in the ‘standing’ case whereas

encouraging EERs of 8.17% and 10.56% were obtained from

the ‘sitting’ and ‘sitting after-exercise’ cases respectively. Fu-

ture work in this new method for ECG biometrics should be

focussed on the creation of a larger database using single-

arm and single lead electrodes to account for higher variabil-

ity in large-scale deployment scenarios. Also, other electrode

configurations can be explored exploiting a single side of the

body that are better in terms of usability and accuracy.
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