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ABSTRACT
This paper addresses the problem of adaptive beamform-
ing for target localization by active cognitive multiple-input
multiple-output (MIMO) sonar in a shallow water waveg-
uide. Recently, a sequential waveform design approach for
estimation of parameters of a linear system was proposed.
In this approach, at each step, the transmit beampattern is
determined based on previous observations. The criterion
used for waveform design is the Bayesian Cramér-Rao bound
(BCRB) for estimation of the unknown system parameters.
In this paper, this method is used for target localization in a
shallow water waveguide, and it is extended to account for
environmental uncertainties which are typical to underwater
acoustic environments. The simulations show the sensitivity
of the localization performance of the method at different
environmental prior uncertainties.

Index Terms— MIMO sonar, cognitive sonar, sequential
waveform design, adaptive beamforming, underwater acous-
tics

1. INTRODUCTION

Optimal beamforming for active arrays has been extensively
studied in the past three decades. The optimization is usu-
ally performed in order to achieve better performance for de-
tection or localization under some constraints, such as trans-
mitted power constraint. The optimization criterion may be
statistical bounds for localization performance, probability of
detection, output signal-to-noise ratio (SNR), or information
theoretic criteria.

Since the introduction of colocated multiple-input multiple-
output (MIMO) radar in [1, 2], several works have been de-
voted for transmit beamform design [3–7]. In a colocated
constellation, both the transmitting and receiving arrays are
assumed to be close to each other in space so that they observe
targets at same directions. In [1,2] it was shown that transmit-
ting spatially orthogonal signals provides higher estimation
accuracy performance over traditional spatially coherent sig-
nals transmission. A cognitive approach for transmit beam-

forming was studied in [5, 6], where the effectiveness of the
adaptive transmit beamforming over non-adaptive transmit
beamforming was demonstrated.

The concept of cognitive radar was introduced in [8]. A
cognitive radar system adaptively interrogates a propagation
channel using all available information. Then, it facilitates
the newly acquired knowledge through feedback from the
receiver to the transmitter. The whole cognitive radar system
constitutes a dynamic closed feedback loop encompassing
the transmitter, environment and receiver. In [7] a new adap-
tive transmit beamforming approach was proposed for target
parameters estimation with cognitive MIMO array, where the
beampattern in each pulse is adaptively determined based on
previous observations. The algorithm was implemented in
the case of free-space environment. This approach suggests a
transmit beamforming scheme, which adaptively minimizes
the Bayesian Cramér-Rao bound (BCRB) or the Reuven-
Messer bound (RMB) on the system parameter estimation
based on historical observations. At each pulse step, the sys-
tem parameters were estimated by using the minimum mean
squared error (MMSE) estimator that was implemented using
the posterior distribution from the previous step.

Underwater localization of a point source has been stud-
ied in several works (see e.g. [9–15]) and various underwater
target localization approaches, such as matched-field process-
ing (MFP) [11, 12] and maximum likelihood (ML) localiza-
tion [9], have been introduced. Several performance bounds,
such as the Cramér-Rao bound [9,10,12] or a Ziv–Zakai-type
bound [12] for source localization in underwater waveguides
were derived and studied.

Source localization in a shallow water waveguide in the
presence of environmental uncertainties has been studied in
several works (see e.g. [10,11,14]). It was shown in [10] that
uncertainty in sensors location severely decreases the estima-
tion accuracy. In [11] it was shown that MFP is sensitive to
environmental mismatch. In [14] a robust ML source local-
ization method, was proposed based on nulling the modes that
are sensitive to environmental uncertainties.

In this paper, we apply the adaptive transmit beamform-



ing technique proposed in [7] for the case of shallow water
waveguide environment. Additionally, the adaptive beam-
forming algorithm will be extended to address environmental
uncertainties. The effect of the environmental uncertainties
on the performance of the adaptive beamforming algorithm is
studied via simulations.

The rest of this paper is organized as follows. In Section
2, the cognitive MIMO signal model is described and the un-
derwater channel model is presented. In Section 3, we review
the BCRB-based sequential beamforming. In Section 4, the
performance of the adaptive algorithm is evaluated via sim-
ulations in the presence of environmental uncertainties. Our
conclusion appears in Section 5.

2. THE SIGNAL MODEL AND SHALLOW
UNDERWATER CHANNEL MODEL FORMULATION

2.1. Cognitive MIMO signal model

Consider a narrowband signal transmission and a static target
scenario. The following general data model describes a colo-
cated MIMO system of NT transmitters and NR receivers:

xk [l] = H (Θ) sk [l] + nk [l]

l = 1, . . . , L, k = 1, 2, . . . (1)

where xk [l] ∈ CNR , sk [l] ∈ CNT , and nk [l] ∈ CNR de-
note the lth snapshot of the observation, the transmit signal,
and the noise vectors, respectively, at the kth pulse step. L is
the number of total snapshots in each pulse step. H (Θ) ∈
CNR×NT is the MIMO channel matrix, dependent of the un-
known parameter vector Θ, which may consist of target lo-
cation parameters, target complex attenuation, and unknown
environmental parameters. Θ ∈ RQT is assumed to be a ran-
dom vector, with a-priori probability density function (pdf),
fΘ (·).

Equation (1) can be rewritten in a matrix form as follows:

Xk = H (Θ)Sk +Nk, k = 1, 2, . . . (2)

where Xk = [xk [1] , . . . ,xk [L]], Sk = [sk [1] , . . . , sk [L]],
and Nk = [nk [1] , . . . ,nk [L]]. We assume that the columns
of Nk are independent and identically distributed (i.i.d.) com-
plex circularly symmetric Gaussian random vectors with zero
mean and known covariance matrix, R.

We are interested in the optimal beamforming of the trans-
mit signal matrix at the kth step, Sk, given observations from
previous steps, denoted by X(k−1) , [X1, . . . ,Xk−1]. The
optimization criterion is the BCRB on the estimation perfor-
mance of the target unknown parameters, in the presence of
environmental uncertainties. Fig. 1 describes the cognitive
system for sequential beamforming.

2.2. Shallow underwater channel model formulation

In this work, we describe an active MIMO sonar system with
colocated transmit and receive arrays. Consider a shallow un-

Fig. 1. Cognitive system scheme for sequential beamforming.

derwater waveguide channel, in which the propagation model
can be described by normal-modes [9, 11, 13, 14]. A point
target is located in the waveguide at depth z0 and range r0
from vertical arrays of omnidirectional transmit and receive
elements. The target is assumed to be in the far-field of the
arrays. The array radiates a narrowband signal. Denote the
target location vector by [z0, r0]

T and its complex attenua-
tion factor by α. Assume the signal model in (2), with the
channel matrix given by H (Θ) , αaRa

T
T . The transmit

and receive steering vectors are given by aT = TTq (z0, r0)
and aR = TRq (z0, r0), respectively. The elements of the
matrices TT ∈ CNT×M and TR ∈ CNR×M are given by
[TT ]im = φm (zTi

) and [TR]im = φm (zRi
), respectively,

and M denotes the number of propagating modes. The func-
tion φm (·) is the mth modal depth eigenfunction and the
terms zTi

and zRi
are the depths of the ith element of the

transmit and receive arrays, respectively. The mth element
of the vector q (z0, r0) ∈ CM×1 is given by [q (z0, r0)]m =

φm (z0)
ejκmr0√
κmr0

, where κm is the horizontal wavenumber of
mode m.

Define the entire unknown parameter vector as Θ ,[
θT ,ψT

]T
, where θ ∈ RQ1 and ψ ∈ RQ2 represent

the target and environmental parameter vectors, respec-
tively. The target unknown random vector is defined as
θ , [Re (α) , Im (α) , z0, r0]

T . Environmental parameters in
an underwater waveguide may consist of the sound velocity
c, the sensors locations {zTi

}NT

i=1 and {zRi
}NR

i=1, the channel
depth D, and other possible parameters. It is implicit that
TT , TR and q are dependent of the environmental parame-
ters, where q depends also on the target location parameters.

3. REVIEW OF THE BCRB-BASED SEQUENTIAL
BEAMFORMING

3.1. Derivation of the objective function for optimal se-
quential beamforming in the presence of environmental
uncertainties

In this section, we review the adaptive algorithm for trans-
mit beamforming derived in [7], and extend it to the case
of environmental uncertainties. We consider the environmen-
tal uncertainties as additional random parameters, as in [10].
The transmitted signal at each step is constrained by the total
power, i.e. tr (Rsk) ≤ P where P is the average power limit



for the transmitted signal vector at each snapshot, tr (·) is the
matrix trace operator and Rsk is the transmit auto-correlation
matrix defined as Rsk , 1

LSkS
H
k . In this algorithm, at the

kth step, Rsk is determined based on previous observations
X(k−1) , [X1, . . . ,Xk−1]. The BCRB for estimating θ
given X(k−1) is considered as a criterion for optimization.
We will choose the objective function as follows:

R̂sk = argminRsk
tr
(
WC

(BCRB)
k (θ)

)
s.t. tr (Rsk) ≤ P, Rsk � 0 (3)

where C
(BCRB)
k (θ) is the BCRB for estimating the tar-

get parameter vector, θ, at the kth pulse step, and W =
diag (w1, . . . , wQ1

) is a weighting matrix. In [17] it was
shown that (3) can be transformed into the following SDP
optimization problem:

R̂sk = argmin
Rsk

,{ti}
Q1
i=1

Q1∑
i=1

witi

s.t.[
4JDk

+ JPk−1
ei

eTi ti

]
� 0, i = 1, . . . , Q1

tr (Rsk) ≤ P, Rsk � 0 (4)

where the vector ei is the ith column of the identity ma-
trix of size QT , {ti}Q1

i=1 are auxiliary variables, and QT =
Q1 + Q2. Let 4JDk

∈ RQT×QT and JPk−1
∈ RQT×QT

be the Bayesian Fisher information matrices (BFIM) for es-
timating the entire unknown parameter vector Θ from the
observations X(k−1). The term 4JDk

represents the incre-
mental BFIM, which is linearly dependent of Rsk . The term
JPk−1

represents the posterior BFIM from previous observa-
tions, which is independent of sk. In [7] it was shown that

4JDk
= (5)

2LRe
{
QI

(
Γ
(
X(k−1)

)
�
(
1QT×QT

⊗RT
sk

))
QT

I

}
where Γ

(
X(k−1)

)
= E

[
dH
dΘ

H
R−1 dH

dΘ

∣∣∣X(k−1)
]
, 1QT×QT

is a QT × QT matrix whose entries are equal to one, QI ,

IQT
⊗ 11×NT

, and dH
dΘ ,

[
∂H
∂Θ1

, . . . , ∂H
∂ΘQT

]
. The operators

Re {·}, �, and ⊗ are the real part operator, Hadamard prod-
uct, and Kronecker product, respectively. The term JPk−1

is
given by

JPk−1
= JP0

+ JNk−1
+ (6)

2L

k−1∑
m=1

Re
{
QI

(
Γ
(
X(k−1)

)
�
(
1QT×QT

⊗RT
sm

))
QT

I

}

where JP0 and JNk−1
are given by

[JP0 ]i,j = −E
[
∂2logfΘ
∂Θi∂Θj

]
(7)

[
JNk−1

]
i,j

= −2

k−1∑
m=1

Re (8){
E
[

tr
(
(Xm −HSm)

H
R−1 ∂2H

∂Θi∂Θj
Sm

)∣∣∣∣X(k−1)

]}
The appropriate expectations in (5) and (6) are performed

w.r.t. the posterior pdf of the entire parameter vector Θ given
previous observations, denoted by fΘ|X(k−1) . This formula-
tion allows minimizing the trace of the weighted BCRB of
target parameter vector θ only, while using the entire infor-
mation in the posterior pdf fΘ|X(k−1) .

3.2. Adaptive algorithm review

The computation of 4JDk
and JPk−1

in (5) and (6) involve
performing expectations w.r.t. the posterior pdf fΘ|X(k−1) ,
which can be obtained sequentially at each pulse step. The
adaptive beamforming algorithm solves the SDP problem in
(4) at each iteration and obtains an optimal auto-correlation
matrix R̂sk based on the information from X(k−1). This in-
formation is embedded in the posterior pdf fΘ|X(k−1) . The se-
quential derivation of fΘ|X(k−1) and the adaptive beamform-
ing algorithm are described in [7]. In the simulations, we will
apply the adaptive beamforming algorithm in order to solve
the extended problem of optimal beamforming for target lo-
calization in the presence of environmental uncertainties.

4. RESULTS

In this section, we evaluate the performance of the adaptive
beamforming technique described above for different cases
of environmental uncertainties. Consider a time-invariant ho-
mogeneous waveguide, as considered in [10], with constant
sound speed c = 1500m/s and depth D0 = 105m. We
use a uniform linear array (ULA) of NT = NR = N = 7
transceivers. The elements of the arrays are equally spaced
across the channel depth. The transmit array radiates a nar-
rowband signal centered at frequency f = 50Hz. Consider
a single point target that is located at [z0, r0], with a complex
attenuation factor α. The mth modal eigenfunction is given

by φm (z) =
√

2
D sin (γmz) where κm =

√(
2πf
c

)2

− γ2
m

and γm =
(
m− 1

2

)
π
D .

In the simulations, we consider uniform a-priori distribu-
tion of the unknown parameters. The regularity conditions
of the BCRB are not satisfied for compact support distri-
butions. The problem re-occurs in each pulse step of the
adaptive algorithm. Therefore, we artificially assume that
JP0 is constant within the a-priori boundaries of the un-
known parameters. Assume uniform a-priori distribution for



the unknown target location parameters as z0 ∼ U [0, 105m],
r0∼U [1150m, 1350m]. The unknown environmental pa-
rameter is the channel depth D0, which is uniformly dis-
tributed D0 ∼ U [105m −4, 105m +4], where 4 rep-
resents the maximum deviation from the true value of the
channel depth.

In the simulations, assume a mismatch between the true
value of D0 and its a-priori uncertainty. The entire unknown
vector parameter is Θ = [z0, r0, D0]

T .
Consider the signal model in (2), where the additive Gaus-

sian noise matrix Nk is randomly generated at each step of
each trial. The noise covariance matrix is denoted by R =
σ2IN . The number of snapshots in each pulse step is L = 10.
The total SNR is defined as SNR , P |α|2

σ2 · ‖Tq(z0,r0)‖4

N2 . In
the simulations the number of propagating modes M remains
constant for all cases of channel depth uncertainty. Consider
the following definition of the 2-dimensional transmit beam-
pattern, which describes the transmitted energy distribution
over the [z, r] plane at the true channel depth D0 :

Q (z, r) ,
qH (z, r)THRskTq (z, r)

‖Tq (z, r)‖2
(9)

In Fig. 2 two cases of channel depth uncertainties are
tested: the case of high uncertainty 4 = 5 m and the case of
low uncertainty 4 = 0.1m. The simulation was performed
for 300 trials. In each trial the true value of the target pa-
rameter vector [z0, r0]

T was independently and uniformly
generated according to boundaries mentioned above. We
compare the root mean squared error (RMSE) of the optimal
beamforming MMSE estimator for target localization and the
square root of the BCRB vs. pulse step, for SNR = −15 dB
and SNR = −10 dB. The MMSE estimator of [z0, r0] at the
(k − 1)th step was obtained via the posterior pdf of the entire
parameter vector fΘ|X(k−1) , which is available at step k. It is
evident that the performance of the estimator is considerably
better for smaller uncertainty in the channel depth. However,
little difference is apparent between the lower bounds, with a
slight advantage to the case of smaller uncertainty. Addition-
ally, the BCRB poorly describes the estimation performance
even in the case of SNR = −10 dB. The difference of
the RMSE performance between the two cases of channel
depth uncertainty can be explained by the high level of the
sidelobes in the ambiguity function in an underwater envi-
ronment, which dominates in the case of high uncertainty of
the channel depth as the BCRB criterion ignores large errors
with high probability.

Fig. 3 illustrates the sequential beamforming in an un-
derwater waveguide. An example of the posterior pdf of the
target parameters and the resulting optimal transmitted beam-
pattern in various pulse steps, was derived for a target located
at [z0, r0] = [25m, 1300m], SNR = −15 dB, and channel
depth uncertainty of 4 = 5m. The posterior pdf has vari-
ous high peak levels distributed across the [z, r] plane in early
steps and after a few more steps the peak converges around the

Fig. 2. Performance of RMSE (dotted) and BCRB (solid) vs.
pulse step. A comparison between uncertainty of 4 = 5m
(‘plus’ sign) and uncertainty of 4 = 0.1m (‘star’ sign).

true location of the target. The high sidelobe ambiguity in the
transmit beampattern, combined with high peak levels in the
posterior pdfs results in large estimation error with high prob-
ability. This is compatible to the RMSE performance shown
in Fig. 2.

5. CONCLUSION

In this paper, we extended the adaptive beamforming ap-
proach introduced in [7] for the case of shallow underwater
channel model in the presence of environmental uncertain-
ties. The BCRB was chosen as the criterion for optimization.
It was shown that the ambiguity dominates the localization
performance. The ambiguity is strongly influenced by envi-
ronmental uncertainties.

Further research can focus on the analysis of high side-
lobe environment (as in underwater channels) with minimiza-
tion of the RMB which accounts for large errors due to high
sidelobes. Additionally, possible research can focus on anal-
ysis of dynamic targets. In cases where the target dynamics
obey the Markovian model, the adaptive algorithm can be ex-
tended to accommodate the target dynamics and use tracking
algorithms in order to improve the adaptive beamforming al-
gorithm.
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