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ABSTRACT

This work presents a new weighting algorithm for biometric
sources within a score-level multi-biometric system. Those
weights are used in the effective and widely used weighted
sum fusion rule to produce multi-biometric decisions. The
presented solution is mainly based on the characteristic of the
overlap region between the genuine and imposter scores dis-
tributions. It also integrates the performance of the biomet-
ric source represented by its equal error rate. This solution
aims at avoiding the shortcomings of previously proposed so-
lutions such as low generalization abilities and sensitiveness
to outliers. The proposed solution is evaluated along with the
state of the art and best practice techniques. The evaluation
was performed on two databases, the Biometric Scores Set
BSSR1 and the Extended Multi Modal Verification for Tele-
services and Security applications database and a satisfying
and stable performance was achieved.

Index Terms— Multi-biometric fusion, Biometric source
weighting, Score-level fusion.

1. INTRODUCTION

Multi-biometrics tries to use multiple biometric information
sources to enhance performance and to overcome the limita-
tions of the conventional uni-modal biometrics. Such limita-
tions are noisy data, low distinctiveness, intra-user variation,
non-universality of biometric characteristics, and vulnerabil-
ity to spoof attacks.

Information fusion is used to produce a unified biomet-
ric decision based on multiple biometric sources. Simple ap-
proaches such as the sum rule score-level fusion proved to
achieve high performance compared to more sophisticated ap-
proaches [1]. A step ahead is the weighted sum rule where
each biometric source is weighted to indicate its relative im-
portance, and thus contribution, to the final fused biometric
decision.

The work leading to these results has received funding from the Eu-
ropean Community’s Framework Programme (FP7/2007-2013) under grant
agreement n◦ 261712 for the collaborative project CAPER.

Searching for the optimal weights combination can be
done by exhaustive search to find optimal solution on training
data. However, as will be shown in the next sections, this
solution has low generalization ability. Weighting methods
based on the statistics of the imposter and genuine scores dis-
tributions showed better and more generalized performance.
Weighting based on the equal error rate of biometric sources
is widely used [2] along with approaches based on D-Prime
calculations [3] and Fisher discriminant ratio [4].

A comparative study by Chia et al. [5] discussed the per-
formance of the most common weighting approaches and pro-
posed a weighting algorithm that depends on the width of the
overlapped area between the imposter and genuine scores dis-
tributions. Other works proposed fusion approaches based on
non-linear combiners [6]. Benchmarking quality-based multi-
biometric fusion was also discussed by Poh et al. [7].

In this work, a number of previously proposed weighting
approaches are discussed and evaluated. Two new weight-
ing techniques are presented and evaluated on two multi-
biometric score databases and compared to the existing ap-
proaches. In the next Section 2, previously proposed baseline
weighting algorithms are discussed along with the proposed
approaches. Section 3 presents the performed experiments
and the achieved results. Finally, a conclusion of this work is
drawn.

2. APPROACH

A score-level multi-biometric decision is produced by com-
bining the scores produced by different biometric sources.
Those biometric sources vary in performance and thus should
have different effect on the fused decision. Within the widely
used linear combination fusion, each biometric source k is
assigned a weight wk that represents its relative effect in the
final biometric decision. This section discusses solutions for
biometric source weights calculations.

2.1. Baseline Weighting Approaches

In the following, a list of biometric source weighting ap-
proaches is presented. Those approaches present the state of



the art and common practices in multi-biometric fusion using
the weighted sum rule.

a) EER weighted (EERW): equal error rate is the common
value of the false acceptance rate (FAR) and the false rejec-
tion rate (FRR) at the operational point where both FAR and
FRR are equal. EER weighting was used to linearly combine
biometric scores in the work of Jain et al. [2]. The EER is in-
verse proportional to the performance of the biometric source.
Therefore, for a multi-biometric system that combinesN bio-
metric source, the EER weight for a biometric source k is
given by:

wk =
1

EERk∑N
k=1

1
EERk

(1)

b) D-Prime weighted (DPW): D-Prime is used to mea-
sure the separation between the genuine and the imposter
scores [3]. High separation indicates a higher performance of
the biometric source. Given that σG

k and σI
k are the genuine

scores and imposter scores standard deviations and µG
k and

µI
k are their mean values, the D-prime is given by:

d′k =
µG
k − µI

k√
(σG

k )
2 + (σI

k)
2

(2)

and it is directly proportional to the performance of the
biometric source and thus the weight can be calculated as:

wk =
d′k∑N
k=1 d

′
k

(3)

c) NCW weighted (NCWW): the Non-Confidence Width
Weight was proposed by Chia et al. [5] to weight biometric
sources for score-level multi-biometric fusion. NCW corre-
sponds to the width of the overlap area between the genuine
and imposter scores distributions. Given that MaxIk is the
maximum imposter score andMinG

k is the minimum genuine
score, NCW is given by:

NCWk =MaxIk −MinGk (4)

as the NCW is inverse proportional to the biometric
source performance, the weights based on the NCW is given
as:

wk =
1

NCWk∑N
k=1

1
NCWk

(5)

d) FDR weighted (FDRW): the Fisher Discriminant Ratio
as described by Lorena and Carvalho [8] and used by Poh et
al. [4] measures the separability of classes, here genuine and
imposter scores. The higher the separability, the higher is the
biometric source performance. The FDR and the correspond-
ing weights are given as:

FDRk =
(µG

k − µI
k)

2

(σG
k )

2 + (σI
k)

2
(6)

wk =
FDRk∑N
k=1 FDRk

(7)

e) Brute force weighted (BFW): here, the weights are as-
signed by brute force search for optimal weights (weights that
produces lowest EER) on the training data. This method is
computationally expensive especially for higher order multi-
biometrics, therefore, only bi-modal biometric fusion were
evaluated by BFW in this work.

f) Equal weighted (EQW): equal weighting assigns equal
weights to all biometric sources under the assumption that all
sources have the same contribution to the final fused biomet-
ric decision. This is usually used when no sufficient informa-
tion (data) are available for the biometric sources in hand.

The use of EER, D-Prime and FDR is common practice
for weighting biometric sources. However, more recent ap-
proaches just as the NCW proved superiority over such ap-
proaches [5]. Using brute force to assign weights has high
computational expense and produce less generalized results
as shown later in Section 3. The high performance of NCWW
is however fragile as the NCW calculation depends on ex-
trema values of comparison scores, which makes its perfor-
mance very sensitive to outliers in training data.

2.2. Proposed Weighting Approaches

In this work, two weighting algorithms are proposed based on
the properties of the genuine and imposter comparison scores
distributions. First is the Mean-to-Extrema weighting (MEW)
that depends on the mean values of the distributions with re-
spect to their extremas. The second is the Overlap Deviation
weighting (OLDW) that tries to avoid depending on unstable
information such as distribution extrema (e.g. NCWW), and
rather depends on more robust measures.

g) Mean-to-Extrema weighted (MEW): based on the as-
sumption that a biometric source with low performance pro-
duces genuine score distribution that has a wide mean-to-
min ranges and a wide mean-to-max imposter scores distri-
bution range. The genuine mean-to-min range represents the
difference between the mean of the genuine scores distribu-
tion and the minimum value (least correct) of the distribution.
The same applies for the mean-to-max range in the imposter
scores distribution.

The MEW is based on the width of the area between the
mean of the imposter scores distribution and its maxima. It
also considers the width of the area between the mean of the
genuine scores distribution and its minima. This aims at fo-
cusing on the overlap area and its neighbor in both distribu-
tions. The MEW is formulated as:

MEk = (MaxIk − µI
k) + (µG

k −MinGk ) (8)

wk =
1

MEk∑N
k=1

1
MEk

(9)



h) Overlap Deviation weighted (OLDW): this weighting
approach is based on two assumptions, first is the inverse re-
lation between the performance of a biometric system and the
standard deviation of the overlap are in its genuine-imposter
scores distributions. The second assumption is the inverse re-
lation between the EER value produced by a certain biometric
source and its performance.

Overlap deviation tries to capture the properties of the
overlap area between the imposter and genuine scores dis-
tributions without depending on singular extrema values. It
also integrates the overall performance (FRR and FAR as an
EER value) of the biometric source. Taking the standard de-
viation of this area aims at reducing the sensitivity to outliers
in the data with respect to considering the width of the area.
Including the overall verification performance of the biomet-
ric source (EER) in the weighting process aims at creating a
better generalized solution.

Given the imposter scores SI
k , the genuine scores SG

k , the
equal error rate EER and the score threshold at the equal
error operating point T , the OLDW can be given as:

OLDk = σ({SI
k | S ≥ T} ∪ {SG

k | S < T})× EER (10)

wk =
1

OLDk∑N
k=1

1
OLDk

(11)

In the next Section 3, the experiment design is introduced.
The performance achieved by the different weighting algo-
rithms discussed will be presented.

3. EXPERIMENT AND RESULTS

The proposed approaches for multi-biometric source weight-
ing are general and can be applied to any number of biomet-
ric sources. However, the presented results focus on the case
of bi-modal biometrics to investigate the performance away
from high order complexities. Moreover, the performance of
high order multi-biometric scenarios is also investigated.

Two multi-biometric scores databases were used to de-
velop and evaluate the discussed solutions in order to assist
the generalization capabilities of those solutions.

The first database is the Extended Multi Modal Verifi-
cation for Teleservices and Security applications database
(XM2VTS) [9] [10]. The Lausanne Protocols I (LP1) parti-
tion of the XM2VTS database was used in the experiment.
This partition contains comparison scores produced by five
face (F0 - F4) and three speech (S5 - S7) baseline experts.
The evaluation and development sets defined by the authors
were used in the performed experiments. The experiments
here considered all possible pairs between face and speech
matchers as well as the fusion of all matchers. The database
contains 295 individuals, which results in 1000 genuine
and 151, 800 imposter scores. For more details about the

XM2VTS score database, one can refer to the work of Poh et
al. [9].

The second database used is the Biometric Scores Set
BSSR1 - multimodal database [11]. The database contains
comparison scores for left and right fingerprints (Fli and
Fri) and two face matchers (Fc and Fg). BSSR1 - multi-
modal database contains 517 genuine and 266, 772 impostor
scores. The experiments here considered all possible pairs
between finger and face matchers as well as the fusion of
all matchers. To evaluate the statistical performance of the
proposed solutions, the database was splitted into three equal-
sized partitions. Experiments were performed on all possible
fold combinations were one partition is used as evaluation
set and the other two are used as a development set. The
reported results are the averaged results of the three evalua-
tion/development combinations.

Min-max normalization was used to bring comparison
scores produced by different biometric sources to a com-
parable range [12]. Min-max normalized score S′ is given
as:

S′ =
S −min{Sk}

max{Sk} −min{Sk}
(12)

Where min{Sk} and max{Sk} are the minimum and
maximum value of scores existing in the training data of the
corresponding biometric source.

To produce the fused scores, the weighted sum rule (lin-
ear combination) was used. The weighted sum rule assigns
each score value Sk with the weight of its source wk. The
weights wk are calculated from the training data of each bio-
metric source as discussed in Section 2. The fused score by
the weighted sum rule F for N score sources is given as:

F =

N∑
k=1

wkSk, k = {1, . . . , N} (13)

The performance of the fusion process under different
weighting approaches is evaluated under verification sce-
nario and presented as EER values and as Receiver Operating
Characteristic (ROC) curves.

For each of the databases, all bi-modal combinations
are evaluated along with the overall fusion of all available
sources. As expected, the results show the advantage of
multi-biometrics on the verification performance.

The EER values obtained from the XM2VTS database are
shown in Figure 1. One can notice the high performance of
NCWW and OLDW both scoring 0.25% EER for the over-
all fusion evaluation followed by the MEW with 0.46% EER
and far from the commonly used DPW with 0.75% EER. In
the bi-modal evaluation, NCWW showed high performance in
many combinations closely followed by a stable performance
by the OLDW. It must be noticed that in some scenarios such
as in F1 S6 and F2 S6 NCWW performed worse than most
approaches while OLDW sustained stable high performance.



(a)

(b)

Fig. 1. Equal error rates achieved on the XM2VTS database:
The rates shown here represent all possible bi-modal combi-
nations of face matchers (F0 - F4) and speech matchers (S5 -
S7) in the XM2VTS database and the results achieved by the
fusion of all eight available sources.

EER values obtained from different approaches using the
BSSR1 database are shown in Figure 2. The figure shows the
superiority of the OLDW approach in most cases with sta-
ble performance compared to the NCWW approach. In the
overall fusion evaluation, the OLDW score the best perfor-
mance at 0.21% EER followed by EERW, EQW and MEW
while the NCWW score 0.37% EER. The fluctuation in the
NCWW performance, with respect to that of the OLDW, may
be related to its dependence on extrema values that are more
vulnerable to outliers than the measures used to calculate the
OLDW.

Fig. 2. Equal error rates achieved on the BSSR1 database: The
rates shown here are for all possible bi-modal combinations
of face matchers (Fc and Fg) and finger matchers (Fli - Flr) in
the BSSR1 database and the results achieved by the fusion of
all four available sources.

Results of evaluation over the XM2VTS database using
different weighting approaches to fuse all available sources
(five face and three speech) are also shown as ROC curves
(Figure 3) to investigate the performance under different op-
erational points. One very low false acceptance rates (FAR),
the proposed OLDW performs the best. While the FAR values
get higher, the lowest false rejection rate (FRR) is achieved by
the NCWW and the proposed OLDW and MEW approaches.

Fig. 3. ROC curves achieved on the XM2VTS database: The
curves shown here represent the performance of the fusion of
all eight (five face and three speech) available sources using
different weighting approaches.



The ROC curves achieved on the BSSR1 database are
shown in Figure 4. Those curves are graphically averaged
curves over the three testing folds of the database in a similar
manner to vertical averaging discussed in [13]. One can no-
tice the superiority of the OLDW performance, especially at
low FAR, followed by the MEW and the NCWW.

Fig. 4. ROC curves achieved on the BSSR1 database: The
curves shown here represent the performance of the fusion of
all four available sources (two face matchers and two finger-
print matchers) using different weighting approaches.

4. CONCLUSION

This work presented a weighting approach for biometric
sources within a weighted sum rule multi-biometric fusion
solution. The proposed solution aimed at being more robust
to outliers in the data and having higher generalization capa-
bilities compared to baseline approaches. To achieve this, the
approach considered the standard deviation of the overlapped
area between genuine and imposter scores distributions. It
also considered the overall performance (as EER) achieved
by each biometric source. Tests were carried on two different
multi-biometric score databases and the results were pre-
sented as EER values and ROC curves. The results showed
a satisfying and robust performance compared to the state of
the art approaches.
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