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ABSTRACT
The analysis of the trabecular bone micro-structure plays
an important role in studying bone fragility diseases such
as osteoporosis. In this context, X-ray CT techniques are
increasingly used to image bone micro-architecture. The
aim of this paper is to improve the segmentation of the bone
micro-structure for further bone quantification. We propose
a joint super-resolution/segmentation method based on to-
tal variation with a convex constraint. The minimization is
performed with the Alternating Direction Method of Mul-
tipliers (ADMM). The new method is compared with the
bicubic interpolation method and the classical total variation
regularization. All methods were tested on blurred, noisy
and down-sampled 3D synchrotron micro-CT bone volumes.
Improved segmentation is obtained with the proposed joint
super-resolution/segmentation method.

Index Terms— segmentation, super-resolution, 3D tra-
becular micro-structure, TV regularization, CT images.

1. INTRODUCTION

X-Ray micro-CT provides 3D images at spatial resolution
higher than clinical CT systems. It has been particularly used
to analyze bone micro-architecture in the study of osteoporo-
sis, a bone fragility disease, still difficult to diagnose [1].
Bone micro-architecture which is an important determinant
of biomechanical strength is made of a complex arrangement
of thin structures called trabeculae, having a thickness around
150 µm. The 3D images of bone micro-architecture obtained
by X-Ray micro-CT are further processed to extract 3D quan-
titative descriptors of the bone micro-structure. Bone struc-
ture analysis requires an image segmentation method as a first
step to extract the bone from the background. Then the calcu-
lation of 3D morphometric parameters such as the bone vol-
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ume to total volume ratio, mean trabecular thickness, mean
trabecular spacing but also topological parameters such as the
connectivity or the organization of the micro-structure in plate
or rods [2, 3] is considered. Such descriptors have been re-
ported in many studies but limited to the analysis of ex vivo
bone samples. While the spatial resolution of clinical CT
scanners is not sufficient to resolve the trabecular structure,
new High Resolution peripheral Quantitative CT (HR-pQCT)
systems have been commercialized to investigate bone micro-
architecture in-vivo at peripheral sites (tibia and radius) [4].
After imaging, the 3D images are segmented and the same
parameters than those used in X-ray micro-CT are calculated
to quantify the bone micro-architecture of patients. However,
the result of image segmentation can be poor, compromising
the subsequent quantification [5]. This problem is related to
the limited physical spatial resolution of the HR-pQCT which
is close to the trabecular thickness. In this paper, we propose
a 3D super-resolution method in view to improve the segmen-
tation of low-resolution volumes of bone micro-structure.

Image segmentation has been widely studied in the liter-
ature, see for example [6–9]. Image super-resolution is also
an active research field [10, 11]. Yet, in most studies, image
restoration (denoising, deblurring, super-resolution) and im-
age segmentation are considered separately. Recent work on
convex relaxation of segmentation problems have proved that
some segmentation models could be exactly computed by re-
sorting to techniques similar to total variation denoising meth-
ods [9, 12]. This bridges the gap between the families of seg-
mentation methods and restoration methods and offers attrac-
tive theoretical guarantees of global minimization, thus seg-
mentation results that are independent from the initialization.
By generalizing these segmentation methods to linear degra-
dations such as blur, it is possible to perform joint restoration
and segmentation, as shown in a very recent work [13].

Since the images we are interested in display quasi-binary
structures, we can strongly rely on a total variation (TV) prior
model and consider single-image super-resolution. We com-
pare segmentation of a grayscale volume obtained by a TV



regularized super-resolution method with joint segmentation /
super-resolution on volumes simulated from a ground-truth
segmentation obtained with high-resolution micro-CT.

The paper is organized as follows. In the first part, we
formulate the joint segmentation / super-resolution problem
as a linear inverse problem, following the approach of Paul
et al. [13]. We detail how to perform the minimization of
the regularization functional using the Alternating Direction
Method of Multipliers (ADMM) which is one of the state-
of-the-art methods for TV regularization [14–16]. Then, the
validation of the proposed approach is performed on experi-
mental high-resolution micro-CT volumes of bone samples at
20 µm after simulating the effect of a loss of spatial resolu-
tion and degradation by noise and blur. Concluding remarks
are given in the last section.

2. SUPER-RESOLUTION SEGMENTATION

2.1. Convex formulation

The reconstruction of a 3D image with an improved resolu-
tion from a single low-resolution volume requires a model of
the degradation the volume undergoes during the acquisition
process. Starting from a high-resolution volume f , the low-
resolution volume g can be modeled as resulting from a blur-
ring followed by a down-sampling, with some added random
fluctuations to account for different sources of noise:

g = Af +w, (1)

where g ∈ RN denotes the N -voxels low-resolution vol-
ume measured by the imaging system, f ∈ RN ′ denotes
an N ′ = N × p3-voxels high-resolution volume with super-
resolution factor p in each of the 3 dimensions of the volume,
A is the linear operator accounting for blurring followed by
down-sampling and w is the (random) noise component.

Reconstruction of a higher-resolution volume f from the
low-resolution volume g requires to solve a linear inverse
problem. Maximum a posteriori restoration methods are
widely used. They define the high-resolution volume f as the
solution of least cost:

f̂ ∈ arg min
f

µ

2
‖Af − g‖22 +R(f) , (2)

where the first term of the sum penalizes misfit between the
reconstructed volume f and the data g (i.e., the negative of
the log-likelihood under a stationary white Gaussian noise hy-
pothesis), R(·) is a regularization term (i.e., prior term) that
favors smooth reconstructions and µ is inversely proportional
to the noise variance and balances the relative weight of each
of the two terms.

Total variation (TV) is a classical regularization func-
tional used to restore images with sharp edges [17]. The
isotropic total variation of a function f is defined as the
L1 norm of its gradient: RTV(f) =

∫
‖∇f(r)‖ dr , where

‖∇f(r)‖ is the Euclidean norm of the gradient. When a

discrete volume f is considered, TV can be rewritten under
the form:

RTV(f) =
∑
i

‖Dif‖ , (3)

where the sum is carried over all voxels of f and Di is the
discrete gradient operator at voxel i.

In a two-phase segmentation task, each voxel of the seg-
mented image s is assigned to one of the two phases. Let
c0 and c1 be the average graylevels of each phase. A satis-
fying segmentation of image f is a labelling such that each
voxel is assigned to a phase whose average graylevel is close
to the corresponding graylevel of image f and where neigh-
bor voxels most often belong to the same class. One can thus
consider the following functional first proposed by Mumford
and Shah [18]:∫

R0

[f(r)− c0]2 dr +

∫
R1

[f(r)− c1]2 dr + ν|Γ| (4)

where R0 and R1 are the regions of each of the two phases
and |Γ| denotes the perimeter of the boundary between re-
gions R0 and R1. In discrete form, minimizing this cost func-
tion corresponds to the following minimization problem:

arg min
s∈B

µ

2
‖f − s‖22 +RTV(s) (5)

where B = {c0, c1}N
′

is the set of all N ′-voxels two-phase
volumes and µ = 2|c1 − c0|/ν.

In order to perform joint super-resolution and segmenta-
tion, we consider the following optimization problem:

arg min
s∈B

µ

2
‖As− g‖22 +RTV(s) . (6)

Minimization problem (6) is NP-hard for general linear opera-
torsA. We therefore only perform approximate minimization
by considering instead the following convex relaxation:

ŝ ∈ arg min
s∈[c0,c1]N′

µ

2
‖As− g‖22 +RTV(s) , (7)

where the set of two-phase volumes has been replaced by the
convex set of graylevel volumes with graylevels in the range
[c0, c1].

2.2. The alternate direction of minimization method

Restoration of a high-resolution image ŝ from a single low-
resolution image requires solving an optimization problem of
the form of equation (7). By introducing auxiliary variables,
the minimization problem can be re-expressed as:

ŝ ∈ arg min
s, {hi},k∈[c0,c1]N′

µ

2
‖As− g‖22 +

∑
i

‖hi‖ , (8)

s.t. ∀i, hi = Di s, and k = s.



The optimization problem (8) can be solved efficiently by
finding the saddle point of the augmented Lagrangian using
the alternating direction method of multipliers (ADMM) [14–
16]. The augmented Lagrangian associated to constrained
problem (8) writes:

LA(s, {hi},k, {λi},λC) =
µ

2
‖As− g‖22 +

∑
i

‖hi‖ (9)

+
∑
i

[
β

2
‖hi −Di s‖2 − λt

i(hi −Di s)
]

+IC(k) +
β

2
‖k − s‖22 − λ

t
C(k − s)

with λi the Lagrange multipliers for the ith equality con-
straint, λC the Lagrange multiplier for convex constraint
and IC(k) is the indicator function of the convex set C =
[c0, c1]N

′
.

The ADMM method alternates between five updates:
1. Update of the high-resolution reconstruction s,

by (approximately) solving the linear system:

Hs(k+1) = µAtg +
∑
i

Dt
i(βh

(k)
i −λ

(k)
i ) + βk−λC ,

withH = µAtA+ βI +
∑
i βD

t
iDi .

2. Update of the auxiliary variables hi,
by applying a soft-thresholding operator Sβ :

h
(k+1)
i = Sβ

(
Dis

(k+1) + λ
(k)
i /β

)
,

with Sβ(u) = max
(

1− 1
β‖u‖ , 0

)
· u .

3. Update of the auxiliary variable k:

k(k+1) = πC(s(k) +
λ
(k)
C

β
) ,

where πC is the projection on the convex set C.

4. Update of the Lagrange multipliers λi:

λ
(k+1)
i = λ

(k)
i − β

(
h
(k+1)
i −Dis(k+1)

)
.

5. Update of the Lagrange multiplier λC :

λ
(k+1)
C = λ

(k)
C − β

(
k(k+1) − s(k+1)

)
.

For comparison purposes, we will also consider in the
next part the super-resolution with the model of equations (2)-
(3), i.e. without the box constraints. This appears as a special
case of the algorithm just described.

3. NUMERICAL EXPERIMENTS

3.1. Implementation details

We applied the two total variation based regularizations and
the bicubic interpolation method to experimental data. Hu-
man bone samples (cylinder core of 10mm) were scanned

with parallel-beam synchrotron micro-CT at 10 µm. To this
aim, 1500 2D projections were acquired after rotating the
sample. The 3D images were reconstructed using the Fil-
tered back projection algorithm [19] and further resampled
at 20 µm. Due to the high signal to noise ratio of synchrotron
CT images, the binary volume of the bone structure was ob-
tained by simple thresholding. This binary image of size
328 × 328 × 328 is considered as the ground truth and is
shown in Fig. 1. The low resolution volumes were obtained
considering a sub-sampling rate of p = 2. For the blurring
operation, we have used a Gaussian point spread function of
standard deviation σblur = 2.425. We tested two additive
Gaussian noise levels with standard deviations σ = 0.01 and
σ = 0.1.

Fig. 1. The reference binary volume.

To ensure the convergence of the regularization methods,
we considered the following stopping criteria of the ADMM
iterations: ‖f

(k−1)−f(k)‖2
‖f(k)‖2

< ε with ε = 10−4 for the noise
level σ = 0.01 and ε = 5 · 10−4 for σ = 0.1 . A high reso-
lution volume was obtained from the low-resolution, blurred
and noisy volume with TV and TV with box constraints reg-
ularization. An extensive sweeping of the regularization pa-
rameters was performed in order to show that TV based reg-
ularizations can be useful to recover the high resolution seg-
mented ground truth. For a fixed regularization parameter, the
β parameter is chosen beforehand by computing only a lim-
ited number of iterations and in order to have the fastest de-
crease of the regularization functional. For each method, the
regularization parameter µ chosen is the one that maximizes
the DICE [20] value between the binary ground truth and the
segmented reconstructed volume obtained with the threshold
0.5. For comparison reasons, the low resolution volume and
the bicubic interpolation volume were segmented with Otsu’s
method [21], for both noise levels. The performance of the
methods was measured considering the DICE value and also
the quantitative bone micro-architecture parameters such as
the bone volume to total volume (BVTV in %), the Euler
number (χ) [22] and the density of connectivity (dconn in
mm−3), normalizing the connectivity (β1) by the total vol-
ume, where β1 = β0 + β2 − χ and β0, β2 are the number of
the connected components and the number of cavities [23].



(a) Ground-truth volume (b) Low resolution volume (c) Bicubic interpolation (d) TV regularization (e) TVbox regularization

Fig. 2. Comparison of 3D restoration methods for the noise level sigma=0.01.

(a) Ground-truth volume (b) Low resolution volume (c) Bicubic interpolation (d) TV regularization (e) TVbox regularization

Fig. 3. Comparison of 3D restoration methods for the noise level sigma=0.1.

3.2. Results

Crops of size 150× 150× 150 of the resulted binary volumes
are shown in Fig. 2 for the noise level σ = 0.01 and in Fig. 3
for σ = 0.1. From these images we can visually estimate that
the TV based methods are better recovering the bone structure
and that TVbox method is the preferred method for solving
our problem. The same conclusion can be taken from Fig. 4
that shows a slice of the ground-truth volume, of the low res-
olution gray level volume and of the resulted binary volumes
with the tested method. The quantitative results are summa-
rized in Table 1. From this table we can see the efficiency of
the TV regularization methods. The TV methods outperforms
clearly the interpolation method which gives poor estimates
of the structural parameters. The DICE, Euler number, con-
nectivity, density of connectivity, and BVTV are all improved
with the TV based regularization approaches.

The best reconstruction results and structural parameters
are obtained with additional box constraint (TVbox method).

4. CONCLUSION

In this paper, we proposed a super-resolution segmentation
method based on the total variation regularization with con-
vex constraint and ADMM minimization for improving the
further trabecular bone micro-structure quantification from
micro-CT volumes. We compared this new approach with
a standard interpolation method and TV super-resolution
method on noisy, blurred, low-resolution volumes in terms of
DICE and structural parameters. Better results are obtained

when a convex constraint is included in the TV regularization
functional. We observe that the bone volume to total volume
is nearly well restored and that the connectivity is also im-
proved compared to the original. In further studies, we will
consider solving the optimization problem without requiring
the inversion of the linear operators involved in the cost func-
tion as in [24]. In the practical situation were the ground truth
is not known, we will address the choice of the regularization
parameters with methods such as Morozov principle. Also,
larger data set will be considered to validate our conclusion.
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