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ABSTRACT

Traditional hierarchical techniques are used in many areas of
research. However, they require the user to set the number of
clusters or use some external criterion to find them. Also, they
are unable to identify varying internal structures in classes,
i.e. classes can be represented as unions of clusters. To over-
come these issues, we propose a family of agglomerative hier-
archical methods, which integrates a high-order dissimilarity
measure, called dissimilarity increments, in traditional link-
age algorithms. Dissimilarity increments are a measure over
triplets of nearest neighbors. This family of algorithms is able
to automatically find the number of clusters using a minimum
description length criterion based on the dissimilarity incre-
ments distribution. Moreover, each algorithm of the proposed
family is able to find classes as unions of clusters, leading to
the identification of internal structures of classes. Experimen-
tal results show that any algorithm from the proposed family
outperforms the traditional ones.

Index Terms— Hierarchical clustering, dissimilarity in-
crements, agglomerative methods

1. INTRODUCTION

Clustering techniques organize patterns into groups or clus-
ters, with no prior information about pattern labeling. That
assignment is such that patterns belonging to the same clus-
ter are similar, according to some proximity measure. Many
clustering techniques have been developed, each one address-
ing differently issues such as cluster shape, number of clus-
ters, and so on. In the literature, clustering techniques can
be found in artificial intelligence, biology, image processing,
marketing and many other areas [1, 2].

Several strategies can be adopted, however there are two
major strategies found in the literature: partitional and hier-
archical methods [1, 3, 4]. Partitional methods assign each
pattern to a single cluster, and the number of clusters is set
beforehand as a design parameter. The most typical and used
partitional algorithm is k-means, which is a prototype-based
method [1, 5]. Examples of other algorithms are probabilistic
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approaches, which assume that the data come from a mixture
of models whose distributions are to be learned [1, 2].

Hierarchical methods produce a set of nested partitions
in a hierarchical structure according to a proximity measure.
Two main categories can be stressed out: agglomerative and
divisive methods. Hierarchical methods belonging to the first
category start by considering each pattern as a single cluster,
and each partition is obtained from the previous one by merg-
ing two clusters into a single cluster, according to a proxim-
ity criterion. Single-link (SL) and average-link (AL) are two
of the most used methods from this category [5]. Divisive
methods start with a single cluster gathering all patterns and
a divisive procedure is applied repeatedly until all clusters are
singletons. This type of methods are very expensive compu-
tationally, for a cluster with N objects, there are 2N−1 − 1
possible divisions [1, 2].

As mentioned above, patterns are assigned to a cluster
according to some proximity measure. The choice of such
measure can be difficult, since no prior information about the
cluster shapes or structure is available. Most of the cluster-
ing techniques found in the literature use pairwise distances
between patterns to perform that assignment, being the Eu-
clidean distance the most typical one. A high-order dissimi-
larity measure has been proposed [6], the dissimilarity incre-
ments, consisting of a measure over triplets of nearest neigh-
bor patterns. Moreover, the distribution of such measure has
been derived under the hypothesis of local Gaussian genera-
tive models for the data [7].

In [8] an agglomerative hierarchical clustering algorithm
was proposed based on the dissimilarity increments distribu-
tion (DID) following a SL strategy. In this paper, we propose
a hierarchical family of clustering algorithms based on DID,
which integrates DID in the traditional hierarchical clustering
algorithms, namely SL, AL, complete-link (CL) and Ward’s
linkage (WL). These new methods are suitable to identify the
structure of a class, i.e., each class is defined as unions of
one or more clusters, where each cluster follows the DID.
Thus, we compare each baseline hierarchical algorithm with
its DID-based extended version: SL vs SLDID, AL vs AL-
DID, CL vs CLDID, and WL vs WLDID.

This paper is organized as follows: section 2 presents the
dissimilarity increments definition and its distribution. The
proposed family of agglomerative hierarchical clustering is



explained in section 3. Experimental results are presented in
section 4 and conclusions are drawn in section 5.

2. HIGH-ORDER DISSIMILARITY

Assuming that xi is a pattern from a dataset X , and d(·, ·)
is some dissimilarity measure between patterns, such as Eu-
clidean distance, a triplet of nearest neighbors (xi,xj ,xk) is
obtained as follows:

(xi,xj ,xk)− nearest neighbors
xj : j = argmin

l
{d(xl,xi), l 6= i}

xk : k = argmin
l
{d(xl,xj), l 6= i, l 6= j}.

The dissimilarity increment [6] associated with the triplet is
defined as

dinc(xi,xj ,xk) = |d(xi,xj)− d(xj ,xk)| . (1)

The dissimilarity increment measure is useful to explore
the structure of a cluster, due to the fact that it can identify
and characterize sparse clusters in data. This identification is
possible because dissimilarity increments between neighbor-
ing patterns should not occur with abrupt changes, and be-
tween well separated clusters will have higher values. Thus,
dissimilarity increments between patterns in different clusters
are positioned on the tail of the distribution of dissimilarity
increments associated with a cluster. In that sense, Fred and
Leitão [6] have extended the concept of dissimilarity incre-
ments between patterns, to the gap of a cluster. This new con-
cept is particularly useful to compare clusters and understand
if two groups form a larger cluster or not.

Assume that xi and xj are the closest pair of patterns such
that xi ∈ Ci and xj ∈ Cj , and xk is the nearest neighbor of
xi within Ci and dt(Ci) ≡ d(xi,xk). We define gap of a
cluster Ci with respect to a cluster Cj , gapCi

(Cj), as the
asymmetric increase in the dissimilarity value given by

gapCi
(Cj) = |d(xi,xj)− dt(Ci)| . (2)

The dissimilarity increments distribution (DID) was
derived in [7], using the Euclidean distance as the dissimi-
larity measure d(·, ·), under the hypothesis of Gaussian dis-
tribution of data. This distribution was written as a function
of the mean value of the dissimilarity increments, which is
denoted as λ. The probability density function (pdf) of the
dissimilarity increments is given by

pdinc(w;λ) =
πβ2
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where erfc(·) is the complementary error function, and β =
2−
√
2.

3. HIERARCHICAL CLUSTERING BASED ON DID

This section presents a family of agglomerative hierarchical
methods, called Hierarchical Clustering based on Dissimilar-
ity Increments Distribution (HCDID). The idea is to combine
a linkage algorithm with the concepts presented in section 2.
An agglomerative hierarchical method starts with each point
in a cluster and progressively join pairs of clusters. HCDID
starts in the same way, each point is a separate cluster, and the
candidates to merge are chosen as being the most similar pair
of clusters, i.e.,

minDist = min{d(xi,xj) : xi ∈ Ci,xj ∈ Cj}. (4)

The decision whether two clusters should or not be merged is
based on one of the following tests:
• Two clusters are automatically merged if both have less

than M patterns, according to some merging function.

• Consider that Cj has less than M patterns and Ci has M
or more patterns, then it is checked if the mean of the
increments of Cj is smaller than α times the mean of in-
crements of Ci, i.e. the increments of Cj fall in the tail
of the DID of Ci. If it does not fall in the tail, clusters Ci
and Cj are merged; otherwise, are kept separate.

• Now, consider that Ci and Cj have already M or more
patterns each. So, it is checked if gapCi

(Cj) is in the
tail of the DID of cluster Ci. When that happens, Ci
is ”frozen”, meaning that Ci is no longer available for
merging with other clusters. Similarly, a test for Cj with
respect to Ci is performed, but only if Ci was not previ-
ously ”frozen”. We only allow one cluster to be ”frozen”
in each iteration of the algorithm.

• Finally, if neither Ci nor Cj are ”frozen”, it is computed
the description length [8] for each cluster as

DL(Ci) =
1

2
(1− log(12)) + log λi

+
1

2
log(I(λi))− log p(w;λi), (5)

where λi is the parameter of the DID (3) for cluster Ci,
and we used the expected Fisher information I(λi) ≡
−E[∂

2 log p(w;λi)
∂λ2

i
]. Moreover, the description length for

the cluster resulting of merging Ci and Cj , Ci ∪ Cj , is
computed in the same way, assuming that λij is the pa-
rameter of the DID for cluster Ci ∪ Cj . Now, if DL(Ci ∪
Cj) has a lower value than DL(Ci)+DL(Cj) (description
length of leaving the clusters separate), clustersCi andCj
are merged and form a new cluster; otherwise, the clusters
are left separated.

This procedure continues until all pairs of clusters have been
tested. An outline of the whole procedure is in Algorithm 1.

Notice that a merging function for the clusters has not
been defined. So far HCDID is a generic algorithm that only



Algorithm 1 Hierarchical clustering based on dissimilarity
increments distribution (HCDID).
Require: data with N samples
Require: parameters M and α
Require: merging function d∗(Ca, Cb)

1: Start by assigning each pattern to a cluster
2: repeat
3: Choose the most similar pair of clusters (Ci, Cj) not

yet tested, according to eq. (4)
4: if |Ci| < M and |Cj | < M then
5: Merge clusters Ci, Cj into a new cluster Cb using

d∗(Ca, Cb)
6: end if
7: if |Ci| ≥M and |Cj | < M then
8: if dinc(Cj) is not in the tail of the pdf of dinc(Ci)

then
9: Merge clusters Ci, Cj into a new cluster Cb using

d∗(Ca, Cb)
10: else
11: Do not merge Ci, Cj
12: end if
13: end if
14: if |Ci| ≥M and |Cj | ≥M then
15: Compute gapCi

(Cj) and gapCj
(Ci)

16: Compute DL(Ci), DL(Cj) and DL(Ci ∪ Cj)
17: if gapCi

(Cj) is in the tail of the pdf of dinc(Ci) then
18: Freeze cluster Ci
19: else if gapCj

(Ci) is in the tail of the pdf of dinc(Cj)
then

20: Freeze cluster Cj
21: else if DL(Ci ∪ Cj) ≤ DL(Ci) + DL(Cj) then
22: Merge clusters Ci, Cj into a new cluster Cb using

d∗(Ca, Cb)
23: else
24: Do not merge Ci, Cj
25: end if
26: end if
27: until all pairs of clusters should not be merged

28: return data partition P

makes decisions on whether two clusters should or not be
merged, hence the designation family of agglomerative hier-
archical methods.

Now, lets consider the new formed cluster, Cb = Ci∪Cj ,
obtained by merging Ci and Cj , and Ca is one of the re-
maining clusters formed in previous steps. Also, lets con-
sider |Ci| and |Cj | as the number of patterns in cluster Ci and
Cj , respectively. We define ∗LDID algorithms by character-
izing the merging function, according to the distance measure
d∗(Ca, Cb) between clusters (∗ can be the letter ’S’, ’A’, ’C’
or ’W’). More specifically, we have:

• SLDID

dS(Ca, Cb) = min{d(Ci, Ca), d(Cj , Ca)}; (6)

• CLDID

dC(Ca, Cb) = max{d(Ci, Ca), d(Cj , Ca)}; (7)

• ALDID

dA(Ca, Cb) =
|Ci|

|Ci|+ |Cj |
d(Ci, Ca)

+
|Cj |

|Ci|+ |Cj |
d(Cj , Ca); (8)

• WLDID

dW (Cb, Ca) =
|Ci|+ |Ca|

|Ci|+ |Cj |+ |Ca|
d(Ci, Ca)

+
|Cj |+ |Ca|

|Ci|+ |Cj |+ |Ca|
d(Cj , Ca)

− |Ca|
|Ci|+ |Cj |+ |Ca|

d(Ci, Cj). (9)

It should be noticed that any other distance measure be-
tween clusters can be used as merging function. In such case
a new algorithm in this family is obtained.

4. EXPERIMENTAL RESULTS

A total of 36 real-world datasets from two repositories were
used in the experiments. The majority of the datasets are
from the UCI Machine Learning Repository1, and only a few
datasets are from the 20-Newsgroups database2. A summary
of the datasets is presented in Table 1.

We intend to compare pairs of clustering algorithms,
namely, SL vs SLDID, AL vs ALDID, CL vs CLDID, and
WL vs WLDID. The set of four DID-based algorithms will be
referred as HCDID, and the corresponding set of traditional
hierarchical algorithms will be referred as THC.

HCDID has some parameters that need to be set. Typi-
cally, M is set to 5 patterns, since it is the minimum number
of patterns to compute a rough estimate of DID, and α is set
to 7, to ensure that very high increments are rejected.

All the algorithms were ran without knowing the true class
labels. The number of clusters for THC is obtained applying
the lifetime criterion [9], while HCDID found intrinsically
the number of clusters automatically. However, the number
of clusters found may not be the true one, since these algo-
rithms are useful for finding internal structure in classes, i.e.,
each class can be described as unions of one or more clus-
ters. The quality of each partition P is assessed by the con-
sistency index (CI) [10] (also known as accuracy), which is

1http://archive.ics.uci.edu/ml
2http://www.ai.mit.edu/people/jrennie/20Newsgroups/



Dataset N p Nc Dataset N p Nc Dataset N p Nc
crabs 200 5 2 house-votes 232 16 2 ionosphere 351 34 2
iris 150 4 3 log-yeast 384 17 5 pima 768 8 2
auto-mpg 398 6 2 wine 178 13 3 80x 45 8 3
biomed 194 5 2 breast 683 9 2 chromo 1143 8 24
malaysia 291 8 20 glass 214 9 4 imox 192 8 4
kimia 216 4096 18 liver 345 6 2 mfeat-fac 2000 216 10
mfeat-fou 2000 76 10 mfeat-kar 2000 64 10 mfeat-pix 2000 240 10
mfeat-zer 2000 47 10 nist16 2000 256 10 sonar 208 60 2
soybean1 266 35 15 soybean2 136 35 4 diff300 300 10 3
same300 297 20 3 sim300 291 20 3 austra 690 15 2
derm 366 11 6 german 1000 18 2 heart 297 13 2
uci-image 2310 18 7 vehicle 846 16 4 wdbc 569 14 2

Table 1. Real-world datasets. N is the number of samples, p the dimension of the feature space and Nc the number of classes.

the percentage of agreement between P and the ground truth
information.

Moreover, a matched consistency index (CI*) is used in
HCDID. This index finds the best match between clusters and
true classes, and computes the percentage of correctly clus-
tered patterns if one represents the classes as the union of
clusters, where each cluster can only be used for one class.
To make a fair comparison, we applied the CI over the THC
assuming that the true number of clusters is known, this is the
same as applying CI*.

Figure 1 presents the CI* for each pair of comparison and
Table 2 presents the overall results for CI and CI* indexes.

From Figure 1, we notice that HCDID is overall better
than THC, and the most significant improvement occurs for
SLDID comparing to SL. Moreover, SLDID is always equal
or better than SL. On the other hand, WLDID is better than
WL, but the improvement is smaller, there are a few datasets
where WL performs better. For the remaining clustering com-
parisons, only three or four datasets have better results when
THC is applied.

From Table 2, only WL performs better than WLDID, as-
suming that the true number of classes is unknown: WL has
an average CI of 46.8%, winning 23 out of 36 datasets, and
WLDID has an average CI of 36.7%, winning 12 out of 36
datasets. However, if we consider a class as a union of clusters
and use CI* to measure the performance of WLDID, it has an
average of 70.1% winning 28 out of 36 datasets. While WL,
when the true number of clusters is known has an average CI
of 63.4%, winning 7 out of 36 datasets.

SLDID is the algorithm with the most significant im-
provement compared to SL, since when it is better than SL its
improvement is on average 21.2% against 0.3%, when we use
CI*, and with an improvement on average 25.9% for SLDID,
against 12.7% for SL, when we use CI. SLDID wins 23 out
of 36 datasets with CI and 31 out of 36 datasets with CI*,
against 11 and 4 out of 36 datasets for SL, respectively.

From Table 2 we observed that HCDID is better than THC

CI CI*
Alg Mean count Mean Dif Mean count Mean Dif
SL 34.9% 11 12.7% 40.2% 4 0.3%
SLDID 47.5% 23 25.9% 58.4% 31 21.2%

AL 38.0% 14 29.0% 51.6% 4 11.6%
ALDID 40.9% 22 23.2% 66.0% 32 17.6%

CL 38.1% 15 23.8% 53.9% 3 8.4%
CLDID 39.6% 21 19.5% 66.5% 32 15.0%

WL 46.8% 23 24.4% 63.4% 7 10.8%
WLDID 36.7% 12 16.4% 70.1% 28 11.4%

Table 2. Pairwise comparison of clustering algorithms: SL vs
SLDID, AL vs ALDID, CL vs CLDID, and WL vs WLDID.
Mean consistency index (CI) and matched consistency index
(CI*) for each algorithm, and number of datasets (count) with
better CI and CI*. Mean Dif indicates that, when one algo-
rithm wins, it is better on average x% than the other algorithm.

in terms of CI. This is shown more clearly when measuring
with CI*. This indicates that HCDID is able to find some
internal structure in classes, i.e., the true classes can be repre-
sented as unions of one or more clusters.

5. CONCLUSIONS

A family of agglomerative hierarchical methods was pro-
posed based on a high-order measure, the dissimilarity in-
crements. This family of algorithms integrates the recently
derived distribution for the dissimilarity increments (DID) in
linkage algorithms. An advantage of these methods compared
to the traditional linkage algorithms is that they are able to
automatically find the number of clusters using a minimum
description length criterion. In comparison, traditional algo-
rithms require the user to set the number of clusters or use
some external criterion to find them.

Each algorithm of the proposed family is able to find
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Fig. 1. Matched consistency index (CI*) comparing pairs of
clustering algorithms. Dots represent datasets and the solid
line, y = x, indicate equal CI* between the two algorithms.
The dash line represents a linear regression line forced to be
parallel to y = x, to indicate which algorithm is better (on
average) and how much is the improvement.

classes as unions of one or more clusters, identifying internal
structures in classes. This property leads to a significant im-
provement of teh performance of the algorithms compared to
their corresponding traditional clustering algorithms.
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