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ABSTRACT 

An accelerated formulation of the Unsupervised Infor-

mation-theoretic Adaptive Image Filtering (UINTA) method 

is presented. It is based on a parallel implementation of the 

algorithm, using the Open Computing Language (OpenCL), 

while maintaining the precision and efficiency of the origi-

nal method, which are briefly discussed focusing on the 

respective computational complexities. The experimental 

computational efficiency is compared with the one obtained 

using the standard implementation, highlighting the signifi-

cant improvement of computational times achieved with the 

proposed one. This new implementation is tested for the 

smoothing of road pavement surface images, for which the 

original method had been previously applied, showing the 

clear advantage of its use. 

Index Terms— Road crack detection, image filtering, 

density estimation, computational complexity, entropy re-

duction.
 
 

1. INTRODUCTION 

Pavement surface imagery acquired during high speed road 

surveys, captured using INO’s LRIS 4K model [1], present a 

high variance in pixels intensities. This represents a chal-

lenge when developing automatic algorithms for road 

pavement surfaces distress detection, with most algorithms 

targeting the detection of road cracks [2]. 

Texture smoothing filtering techniques can be applied to 

this kind of imagery, to reduce the variance of pixel intensi-

ties, especially in regions not revealing crack distresses, 

ensuring that an adequate segmentation procedure will then 

be able to better distinguish between crack and no-crack 

pixels [3]. A modern noise reduction method was proposed 

by Awate and Whitaker whose principles stand close to the 

non-local-means algorithms [4]. This kind of methods ad-

dress the preservation of structure in digital images [5], 

which is an important characteristic when dealing with the 

road crack detection problem, since crack information in 

images may not be severely deteriorated when a smoothing 

technique is applied. 
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Reducing the entropy of the intensity patterns in image 

regions, by applying a filtering technique like the Unsuper-

vised Information-theoretic Adaptive Image Filtering 

(UINTA) [4], is a smoothing filtering strategy that can be 

successfully included in a road pavement surface crack 

detection system, as shown in [3]. Nevertheless, the result-

ing processing times are very high, due to the computational 

complexity of the algorithm, O(|T||Ai|E
D
), where |T| is the 

total number of pixels of the image, |Ai| is the size of a ran-

dom sample used in the entropy estimation procedure, E is 

the neighborhood window size and D is the image dimen-

sion. 

Two approaches for improving the computational times 

may be pursued, notably: to choose a more efficient density 

estimation algorithm or to implement a parallel version of 

the UINTA algorithm. 

Following the first approach, a nonparametric density es-

timation, capable of dealing with the computational re-

quirements of large images, is described in [6]. It uses a fast 

algorithm, in terms of dataset size and dimensionality, based 

on the kd-tree probability density estimation. It is also ex-

perimentally demonstrated in [7] that dual-tree methods 

give the best results when dealing with high dimensional 

multivariate nonparametric probability density estimations. 

Other approaches presented in the literature for improving 

the computational speed of kernel density estimation meth-

ods include the proposal made by Silverman, which is based 

on the Fast Fourier Transform (FFT) [8], while the proposal 

made by Elgammal et al. is based on the Fast Gauss Trans-

form [9]. Recent parallel implementation proposals were 

suggested by Michailidis and Margaritis for GPUs with the 

CUDA framework [10], as well as proposed by Srinivasan 

et al [11]. From the scientific literature, no OpenCL imple-

mentation based on parallel computing was found, this 

framework considered a royalty free open standard for cross 

platform parallel programming of modern processors, allow-

ing an heterogeneous model of computing not restricted to 

one brand of GPUs as CUDA. 

However, the probability density estimate adopted in 

reference [7] is based on the entire set of image intensities, 

resulting on O(n log(n)) computational complexity, where n 

is the total number of pixels in the image sample. In 

UINTA, a more local and problem connected approach is 

followed, resulting in a lower computational complexity. 



Due to the locality of UINTA, it is easy to achieve good 

speedups with a parallel implementation of the algorithm, 

instead of following approaches [7], [8] and [9]. Therefore a 

parallel version of the UINTA algorithm implemented with 

the OpenCL framework is presented, these GPU based par-

allel programs being considered a good low-cost solution for 

improving the computational times, as demonstrated in this 

paper for the development of automatic systems for the 

detection of cracks on images. These automatic crack detec-

tion systems typically demand a significant computational 

effort due to handling input images of large size. Therefore, 

efficient pre-processing procedures are needed to smooth 

them without significantly degrading the crack structures. 

The paper organization is as follows. Section 2 presents 

the crack detection system architecture considered, includ-

ing the image acquisition procedures and subsequent pro-

cessing. Section 3 describes the theoretical and practical 

formulation of the proposed smoothing approach, discusses 

the corresponding computational complexity and explains 

how to achieve a low-cost fast implementation. Section 4 

provides a set of experimental results and their discussion. 

Section 5 draws some conclusions and presents hints for 

future work 

2. SYSTEM ARCHITECTURE 

Since the proposed efficient smoothing strategy will be 

tested in the context of a system that detects cracks in road 

pavement surface images, this section describes the consid-

ered system architecture. In this paper a simple crack detec-

tion system is used, mainly to allow highlighting the im-

portance of the smoothing step. The system architecture is 

illustrated in Figure 1, including the imaging system used 

for imagery acquisition during high speed road pavement 

surveys, the entropy reduction (smoothing) module and the 

subsequent crack detection by thresholding and processing 

of the resulting connected components for the identification 

of crack segments. 

The road surface images considered were acquired by 

the INO’s LRIS 4k system. It features a laser imaging sys-

tem for road pavement surface imagery acquisition, allow-

ing operation at the high speeds (70 km/h and higher) re-

quired for safe driving in highways [1]. The system is com-

posed by two sets of linescan sensors combined with two 

laser illuminators (positioned at the left and right on the 

backside of the vehicle), providing a good contrast between 

crack and no-crack regions of the image. Each linescan set 

covers half road lane outputting images with dimensions of 

4096×2048 pixels, with the larger image dimension being 

parallel to the road axis and the other dimension covering 

approximately 2 meters of pavement surface (half road 

lane). All the images have 8-bit gray level resolution, pre-

senting pixel intensities ranging from 0 to 255. A sample 

pair of images simultaneously acquired by the left and right 

sensors are shown in Figure 2. 

Using such a simple system architecture, as shown in 

Figure 1, is only possible if a very efficient entropy reduc-

tion module can be designed for smoothing the images of 

road pavement surface. Since a very large amount of imag-

ing data is collected while surveying existing road networks, 

a timely processing of the acquired footage is required. 

Therefore, it is important to have a processing system of low 

computational complexity, notably at the entropy reduction 

stage where a nonparametric multivariate probability density 

estimation method is applied. This allows considering a very 

simple segmentation approach for crack detection, such as 

the modified Otsu thresholding operator proposed by Wan 

and Wang [12]. 

3. PROPOSED FAST UNSUPERVISED FILTERING 

The proposed fast probability density estimation filtering 

approach uses a parallel version of the unsupervised infor-

mation-theoretic adaptive image filtering [4]. 

Modern Graphic Processing Units (GPUs) are very effi-

cient at manipulating images and their highly parallel struc-

ture makes them more effective than general purpose Com-

puter Processing Unit (CPU), for algorithms where pro-

cessing of large blocks of data can be done in parallel. The 

OpenCL is a framework for writing programs consisting of 

heterogeneous processors: CPUs, GPUs, Digital Signal 

Processors, etc. OpenCL has an Application Program Inter-

face (API) that is used to define and control the processor 

Imagery 
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Crack Regions  
Fig. 1. Architecture of the proposed crack detection system. 

   
Fig. 2. Sample road pavement surface images acquired by the 

INO’s LRIS 4k model. 



platforms and also a C-based language for writing functions 

that execute on the processing devices (kernels). 

The entropy estimation in UINTA is based on a classical 

multivariate Gaussian kernel density estimation. This leads 

to O(n
2
) computational complexities, where n is the total 

number of pixels in the image sample. The UINTA algo-

rithm authors state that their method is computationally 

inefficient and therefore limit the size of the samples that 

can be used to a maximum of |Ai| = 1000 of points, defined 

on a discrete Cartesian grid. Even for such small samples, 

the procedure is very slow. These are clearly limiting factors 

for the direct application of the UINTA methodology to 

smooth pavement surface images. A system for the automat-

ic detection of cracks based on UINTA has been proposed in 

[3], where only a subset of carefully selected image blocks 

are pre-processed using this smoothing technique, rather 

than the whole image. 

Despite the computational limitations mentioned by re-

searchers, the UINTA method presents good experimental 

results and is theoretically sound. Central to the UINTA 

filter is the computation of an estimate of the entropy given 

by: 

 ( ̃)     [    ( ̃)]. (1) 

The entropy is estimated over the stationary random vec-

tor  ̃  ( ̃  ̃), representing image regions. The full set of 

image pixels is represented by { }. The subjacent random 

process is considered to be stationary and ergodic. The orig-

inal image is represented by  ( ), the corresponding set of 

neighborhood intensities by  ( ) and regions by  ( ). The 

corresponding random variables for the observed degraded 

image are represented by  ̃, ̃ and  ̃. 

For a stationary ergodic process, the entropy of the im-

age may be approximated by the average of estimated local 

entropies: 
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where |T| is the number of points in the image and    is 

the vector of intensities associated to each point   . The 

entropy minimization procedure of UINTA, which is based 

on the gradient descent technique, can be written as: 

 ̂     ̂   
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where x is the image intensity for each point in the image 

and the derivative of the entropy is given by (4), where C is 

the covariance matrix and    represents the computed value 

from the pdf estimate. 
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The proposed pseudo code for the kernel is presented in 

Figure 3. 

Fig. 3. UINTA pseudo code based on parallel processing. 

The kernel is applied to each pixel of the sourceImage 

and the updated value of the pixel, after the application of 

the parallel UINTA kernel, is stored in the outputImage. The 

coordinates of the image are referenced by (ti_col, ti_row). 

The read_image() and write_image() functions are provided 

by OpenCL with appropriate sampling procedures. 
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Fig. 4. Parallel processing computer architecture. 

The (Fi_row, Fi_col) represent a previously generated 

random Gaussian distributed vector sample of Ni points, 

centered on (0,0) coordinate and is used to form the 

(Ai_row, Ai_col) vector of coordinates that will point to the 

local image intensities used to estimate the pdf, as proposed 

in [4]. 

 ParallelUinta(sourceImage, outputImage, Fi_row, Fi_col,  

        nrows, ncols) 

   Ni = 1000 

   W = 4 

   sigma = 3.0 

   lambda = 0.2 * sigma * sigma / 9.0 
 

   ti_col = get_global_id(0) 

   ti_row = get_global_id(1) 
 

   xi = read_imagef(sourceImage, ti_row, ti_col) 
 

   FOR k = 0; k < Ni; k++ 

     sum = 0.0 

     Ai_col = Fi_col[k] + ti_col 

     Ai_row = Fi_row[k]      + ti_row 
 

     FOR  u = -W; u <= W; u++ 

       FOR v=-W; v <= W; v++ 

         x_uv = read_imagef(sourceImage, ti_row+u, ti_col+v) 

         ai_uv= read_imagef(sourceImage, Ai_row+u, Ai_col+v) 

         a = x_uv - ai_uv 

         sum += a * a 

       END FOR 

     END FOR 

     xk = read_imagef(sourceImage, Ai_row, Ai_col) 

     p = exp(sum / (-0.5 * sigma) ) 

     sum_k += p 

     sum_j += p * (xi - xk) 

   END FOR 
 

   r = sum_j / (sigma * sum_k) 

   y = xi - lambda * r  

   write_imagef(outputImage, ti_col, ti_row, y) 

 END 



          

          

          

          

Fig. 5. Experimental sample results: original sample regions taken from original images, two showing: cracks, a white lane marking and 

without cracks (left column, from top to bottom); the respective segmentation results using th = 60, computed by means of the modified 

Otsu algorithm (2nd column); smoothed images using the proposed fast probability density estimation filtering (3rd column); the respective 

segmentation results (right column), again using th = 60 to better highlight the effects of smoothing, i.e. less number of no-crack regions. 
 

In the present proposal, the parallel version of the algo-

rithm was programmed using version 1.2 of the OpenCL 

framework standard. An AMD Radeon HD 7870 OC GPU 

was used for the implementation of the algorithm. The HD 

7870 GPU has 20 CUs (Compute Units). Each CU can exe-

cute a different kernel program. 

A maximum of 256 processing threads, with simultane-

ous concurrent execution are allowed, and they may be 

assigned to any subset of CUs. Due to the geometry of the 

images, with dimensions that are powers of 2, and the nature 

of the parallel version of the algorithm, 16 CUs were chosen 

for the parallel algorithm. The corresponding parallel pro-

cessing architecture is shown in Figure 4. The expected 

speedup is proportional to the number of work-items (WIs), 

thus leading to a significantly reduction in processing time 

when compared to a single core based computation. The 

adopted number of WIs is the maximum allowed (256) for 

parallel execution on the HD 7870 GPU, corresponding to 

16 CUs times 16 WIs. The same number of iterations as 

suggested in [4], i.e. 10 iterations per image, is adopted. 



After the entropy reduction, a simple segmentation by 

thresholding can be performed using the intensity th com-

puted according to proposal made in [12]. 

4. EXPERIMENTAL RESULTS 

Experimental results are presented based on imagery ac-

quired by INO’s LRIS 4K model [1], taken during an exper-

imental road pavement survey over Canadian roads. 

The proposed implementation of UINTA was developed 

using the C programming language on the Linux OS and 

version 4.7.3 of the GNU C compiler, running on a single 

core of the AMD FX 8350 CPU. Typical processing times 

achieved are shown in Table 1. 

Parallel processing times show a speedup of approxi-

mately 75 times when compared to the original single core 

UINTA version (see Table 1, for the comparison between 

single core and parallel processing times based on 16 CUs), 

referred to the FX 8350 CPU and the HD 7870 GPU. The 

execution times for the original and parallel versions are 

linearly proportional to the number of images pixels. Further 

improvements on computation times are foreseeable if a 

more complex kernel density estimation is pursued, aligned 

with references [10] and [11], but not very significant since 

parallel UINTA leads to few computations per pixel as 

shown in the pseudo code in Figure 3. These small im-

provements are related to the improvement of the inner for 

cycles in the kernel represented in Figure 3, by taking ad-

vantage of loop unrolling. Michailidis and Margaritis state 

in [10] that the performance gains of the two CUDA based 

optimized implementations of the kernel density estimation 

algorithm versus the naïve implementation are small. This 

naïve implementation is of the same kind as proposed in this 

paper, but with more steps, since UINTA has a gradient 

descent procedure that leads to some calculus simplifica-

tions. The computational efficiency achieved makes it pos-

sible the use of this entropy reduction approach for the 

smoothing of pavement surface images using a low-cost 

hardware platform. 

Image size 
Processing times (sec.) 

Single 16 CUs / 256 WIs 20 CUs / 240 WIs 

256×256 130 1.71 1.98 

512×512 510 6.77 7.64 

1024×1024 2079 26.71 30.22 

2048×2048 8208 107.26 123.25 

4096×4096 35016 467.75 544.46 

Table 1. Computational times as a function of sample image size. 

Sample results obtained by the segmentation module af-

ter smoothing using the proposed parallel implementation of 

UINTA are presented in the right column of Figure 5, which 

may be compared to those obtained using nonsmoothed 

images (shown on the 2
nd

 column). Crack regions are shown 

as white regions while the remaining image regions do not 

contain crack pixels. These results provide a good match 

when visually evaluated by a road expert. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, a parallel implementation of UINTA filtering 

method that leads to a considerable computational time 

improvement (approximately 75 times), is proposed. The 

new implementation obtains exactly the same results of the 

original UINTA, while considerably improving the compu-

tational time required to apply the algorithm. 

The parallelization of other smoothing methods using the 

same hardware devices is part of the planned future work. 
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