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Abstract—This paper studies the problem of distributed pa-
rameter estimation in multi-agent networks with exponential
family observation statistics. Conforming to a given inter-agent
communication topology, a distributed recursive estimator of the
consensus-plus-innovations type is presented in which at every
observation sampling epoch the network agents exchange a single
round of messages with their communication neighbors and
recursively update their local parameter estimates by simulta-
neously processing the received neighborhood data and the new
information (innovation) embedded in the observation sample.
Under global observability of the networked sensing model and
mean connectivity of the inter-agent communication network,
the proposed estimator is shown to yield consistent parameter
estimates at each network agent. Furthermore, it is shown that
the distributed estimator is asymptotically efficient, in that, the
asymptotic covariances of the agent estimates coincide with that
of the optimal centralized estimator, i.e., the inverse of the
centralized Fisher information rate.

Index Terms—Multi-agent networks, distributed estimation,
exponential family, collaborative network processing, consensus,
stochastic aproximation.

1. INTRODUCTION

Motivated by applications in multi-agent networked infor-
mation processing, we revisit the problem of distributed se-
quential parameter estimation. The setup considered is a highly
non-classical distributed information setting, in which each
network agent samples over time an independent and iden-
tically distributed (i.i.d.) time-series which constitute noisy
(nonlinear) functions (transformations) of the (vector) param-
eter of interest with exponential family statistics. Further, in
the spirit of typical agent-networking and wireless sensing ap-
plications with limited agent communication and computation
capabilities, we restrict ourselves to scenarios in which each
agent is only aware of its local sensing model and, assuming
slotted-discrete time, may only communicate (collaborate)
with its agent-neighborhood (possibly dynamic and random)
once per epoch of new observation acquisition, i.e., we con-
sider scenarios in which the inter-agent communication rate
is at most as high as the observation sampling rate. Broadly
speaking, the goal of distributed parameter estimation in such
multi-agent scenarios is to update over time the local agent
estimates by effectively processing local observation samples
and exchanging information with neighboring agents. To this
end, the paper presents a distributed estimation approach of
the consensus-plus-innovations type, which accomplishes the
following:
Consistency under distributed observability: Under global
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observability1 of the multi-agent sensing model and mean
connectivity of the inter-agent communication-collaboration
network, our distributed estimation approach is shown to
yield strongly consistent parameter estimates at each agent.
Conversely, it may be readily seen that the conditions of
global observability and mean network connectivity are in
fact necessary for obtaining consistent parameter estimates in
our distributed information-collaboration setup. Indeed, global
observability is the minimal requirement for consistency even
in centralized estimation, whereas, in the absence of network
connectivity, there may be locally unobservable agent-network
components which, under no circumstance, will be able to
generate consistent parameter estimates.
Asymptotic efficiency: Under the same conditions of global
observability of the multi-agent sensing model and mean con-
nectivity of the inter-agent communication-collaboration net-
work, the proposed distributed estimation approach is shown
to be asymptotically efficient. In other words, in terms of
asymptotic convergence rate, the local agent estimates are
as good as the optimal centralized2, i.e., the local estimates
achieve asymptotic covariance equal to the inverse of the
centralized Fisher information rate. The key point to note here
is that the above optimality holds as long as the mean com-
munication network is connected irrespective of how sparse
the link realizations are.

In the context of parallel computing and optimization in
multi-agent environments, interacting stochastic gradient and
stochastic approximation algorithms have been proposed–see,
for example, early work [1], [2]. In contrast, to cope with
scenarios where local observations are sensed sequentially
over time and inter-agent communication is restricted to ar-
bitrary preassigned topologies and occurs at the same rate as
sensing, we have proposed consensus-plus-innovations type
architectures, see [3]. Consensus-plus-innovations algorithms
embed a single round of neighborhood consensus or agree-
ment like in [4]–[6], with in addition local processing of
the sampled new observation, the local innovation; see for
example consensus-plus-innovation approaches for nonlinear
distributed estimation [3], detection [7], [8], adaptive con-
trol [9] and learning [10]. Other approaches for distributed
optimization and inference in multi-agent networks have been
considered, see for example diffusion for network inference
and optimization [11], [12] and networked LMS and vari-

1Global observability means that for every pair of different parameter
values, the corresponding probability measures induced on the aggregate
or collective agent observation set are distinguishable. For setups involving
exponential families distinguishability is aptly captured by strict positivity of
the Kullback-Liebler (KL) divergence between the corresponding measures,
see Assumption 2.2 for details.

2The term centralized estimator refers to a hypothetical fusion center based
estimator that has access to all agent observations at all times.



ants [11], [13]–[16]. The key distinction between this prior art
and the current paper is that, in the former the focus has been
mainly on consistency (or minimizing the asymptotic error
residual between the estimated and the true parameter), but
not on asymptotic efficiency. The requirement of asymptotic
efficiency complicates the construction of such distributed al-
gorithms non-trivially and necessitates the use of time-varying
consensus and innovation gains in the update process; further
these time-varying gains driving the persistent consensus and
innovation potentials need to decay at strictly different rates
in order for the distributed scheme to achieve the asymptotic
covariance of the optimal centralized estimator. Such mixed
time-scale construction for asymptotically efficient distributed
parameter estimation in linear statistical models was obtained
in [17], [18]. However, in contrast to optimal estimation in lin-
ear statistical models [17], [18], in the nonlinear non-Gaussian
setting, the local innovation gains that achieve asymptotic
efficiency are necessarily dependent on the true value of the
parameter to be estimated and on the statistics of the global
sensing model. Since the value of the parameter (and hence
the optimal estimator gains) are not available in advance, our
proposed distributed estimation approach involves a distributed
online gain learning procedure that proceeds in conjunction
with the sequential estimation task. As a result, a closed-loop
interaction occurs between the gain learning and parameter
estimation that is reminiscent of the certainty-equivalence
approach for adaptive estimation and control–although the
analysis methodology is significantly different from classical
techniques used in adaptive processing (see, for example, [19],
[20] and also [21]–[23] in the context of parameter estimation),
primarily due to the distributed nature of our problem.

The rest of the paper is organized as follows. Spectral graph
theory notation is reviewed next. The multi-agent sensing
model is described in Section 2, where we also review some
classical concepts from (centralized) estimation theory. Sec-
tion 3 presents the proposed distributed parameter estimation
algorithm and derives its convergence, the main result of the
paper. Finally, Section 4 concludes the paper and discusses
research avenues for future research.

Detailed proofs of the technical results presented in this
paper can be found in the longer manuscript [24].

A. Notation

We denote by R the set of reals, R+ the set of non-negative
reals, by Rk the k-dimensional Euclidean space and by Rk×k
the set of k× k matrices with real entries. Time t is assumed
to be discrete or slotted throughout the paper.
Spectral graph theory: The inter-agent communication topol-
ogy at a given time instant may be described by an undirected
graph G = (V,E), with V = [1 · · ·N ] and E denoting the set
of agents (nodes) and inter-agent communication links (edges)
respectively. The unordered pair (n, l) ∈ E if there exists an
edge between nodes n and l. We consider simple graphs, i.e.,
graphs devoid of self-loops and multiple edges. A graph is
connected if there exists a path between any pair of nodes.
The neighborhood of node n is Ωn = {l ∈ V : (n, l) ∈ E}.
The structure of the graph can be described by the symmetric
N ×N adjacency matrix, A = [Anl], Anl = 1, if (n, l) ∈ E,
Anl = 0, otherwise. Let the degree matrix be the diagonal
matrix D = diag (d1 · · · dN ). The positive semidefinite matrix
L = D − A is called the graph Laplacian matrix. The

eigenvalues of L can be ordered as 0 = λ1(L) ≤ λ2(L) ≤
· · · ≤ λN (L). The multiplicity of the zero eigenvalue equals
the number of connected components of the network; for a
connected graph, λ2(L) > 0 (see [25]).

2. MULTI-AGENT SENSING MODEL

Let θ∗ ∈ RM be an M -dimensional (vector) parameter that
is to be estimated by a network of N agents. Throughout, we
assume that all the random objects are defined on a common
measurable space (Ω,F) equipped with a filtration {Ft}.
Probability and expectation, when the true (but unknown)
parameter value θ∗ is in force, are denoted by Pθ∗(·) and
Eθ∗ [·] respectively. All inequalities involving random variables
are to be interpreted a.s.

Since the sources of randomness in our formulation are the
observations yn(t)’s sensed by the network agents at each
time t = 0, 1, · · · , and the Laplacian matrices Lt’s modeling
the stochastic inter-agent communication graphs over time (to
be made precise soon), the filtration {Ft} may be taken to
be the natural filtration induced by these random quantities,
i.e., Ft = σ

(
{Ls, {yn(s)}Nn=1}t−1

s=0

)
is the σ-algebra induced

by the observation and communication processes. Finally, a
stochastic process {zt} is said to be {Ft}-adapted if the
σ-algebra σ(zt) is a subset of Ft at each t; in particular,
if {Ft} is the natural filtration induced by the observations
and Laplacians, then a process {zt} is {Ft}-adapted if for
each t there exists a measurable function Zt(·) such that
zt = Zt

(
{Ls, {yn(s)}Nn=1}t−1

s=0

)
.

Each network agent n sequentially observes an independent
and identically distributed (i.i.d.) time-series {yn(t)} of noisy
measurements of θ∗, where the distribution µθ∗

n of yn(t)
belongs to a θ-parameterized exponential family, formalized
as follows:

Assumption 2.1. For each n, let νn be a σ-finite measure on
RMn . Let gn : RMn 7→ RM be a Borel function such that for
all θ ∈ RM the following expectation exists:

λn(θ) =

∫
RMn

eθ
>gn(yn)dνn(yn) <∞. (1)

Finally, let
{
µθ
n

}
, for θ ∈ RM , be the corresponding θ-

parameterized exponential family of distributions on RMn

(see [26]), i.e., for each θ ∈ RM the probability measure
µθ
n on RMn is given by the Radon-Nikodym derivative

dµθ
n

dνn
(yn) = e(θ

>gn(yn)−ψn(θ)) (2)

for all yn ∈ RMn , where ψn(·) denotes the function ψn(θ) =
log λn(θ).

We assume that each network agent n obtains an {Ft+1}-
adapted independent and identically distributed (i.i.d.) se-
quence {yn(t)} of observations of the (true) parameter θ∗

with distribution µn(θ∗), and, for each t, yn(t) is independent
of Ft. Further, we assume that the observation sequences
{yn(t)} and {yl(t)} at any two agents n and l are mutually
independent.

As an example, consider the familiar linear Gaussian setup
in which agent n observes

yn(t) = Hnθ + vn(t), (3)



where Hn ∈ RMn×M is the local sensing matrix and {vn(t)}
denotes i.i.d. zero-mean Gaussian noise sequence with positive
definite covariance matrix Rn. Denoting by |Rn| the determi-
nant of Rn, the probability density function (p.d.f.) of yn(t)
is given by

fn(yn) =
1√

(2π)Mn |Rn|
e−

1
2 (yn−Hnθ)>R−1

n (yn−Hnθ), (4)

which is the Radon-Nikodym derivative of the multi-variate
Gaussian measure N (Hnθ, Rn) w.r.t. the Lebesgue measure
on RMn . Rewriting the above as

fn(yn) = eθ
>H>n R

−1
n yn−(1/2)H>n θ>R−1

n Hnθ (5)

× 1√
(2π)Mn |Rn|

e−
1
2y
>
nR
−1
n yn , (6)

we note that the observation statistics satisfy Assumption 2.1,
with νn in (2) corresponding to the multi-variate zero-mean
Gaussian measure on RMn with covariance Rn and µθ

n is ab-
solutely continuous w.r.t. νn with Radon-Nikodym derivative

dµθ
n

dνn
(yn) = e(θ

>gn(yn)−ψn(θ)) (7)

= eθ
>H>n R

−1
n yn−(1/2)H>n θ>R−1

n Hnθ (8)

in the formalism of (2).
We will also denote by yt the totality of agent ob-

servations at a given time t, i.e., yt = Vec(yn(t)) =[
y>1 (t), · · · ,y>N (t)

]>
. For θ ∈ RM let µθ denote the product

measure µθ
1⊗· · ·⊗µθ

N on the product space RM1⊗· · ·⊗RMN ,
which means the measures µn, n = 1 · · ·N , are independent;
it is readily seen that {µθ} is a θ-parameterized exponential
family with respect to (w.r.t.) the product measure ν =
ν1 ⊗ · · · ⊗ νN and given by the Radon-Nikodym derivatives

dµθ

dν
(y) = e(θ

>g(y)−ψ(θ)), (9)

where y = Vec(yn) denotes a generic element of the product
space and the functions g(·) and ψ(·) are given by

g(y) =

N∑
n=1

gn(yn) and ψ(θ) =

N∑
n=1

ψn(θ) (10)

respectively.
It is readily seen that under Assumption 2.1 the global

observation sequence {yt} is {Ft+1}-adapted, with yt being
independent of Ft and distributed as µθ∗ (due to mutual
independence of the local agent observations) for all t.

For most practical agent network applications, each agent
observes only a subset of Mn of the components of the
parameter vector, with Mn � M . It is then necessary for
the agents to collaborate by means of occasional local inter-
agent message exchanges to achieve a reasonable estimate
of the parameter θ∗. To formalize, while we do not require
local observability for θ∗, we assume that the network sensing
model is globally observable as follows:

Assumption 2.2. The network sensing model is globally
observable, i.e., we assume D(θ,θ′) > 0 and D(θ′,θ) > 0 for
each pair (θ,θ′) of parameter values, where D(θ,θ′) denotes

the Kullback-Leibler divergence between the distributions µθ

and µθ′ , i.e.,

D(θ,θ′) =

∫
y

log

(
dµθ

dµθ′
(y)

)
dµθ(y). (11)

Returning to the linear Gaussian sensing model example
(see (3)), the global observability condition in Assumption 2.2
reduces to the invertibility of the aggregate Grammian matrix∑N
n=1H

>
n Hn, where Hn denotes the sensing matrix associ-

ated with the n-th agent. Standard results from linear estima-
tion theory confirms that such invertibility (in the linear case)
is necessary and sufficient for obtaining consistent estimates
of θ∗ in centralized settings.

As a direct consequence of the assumptions stated above, we
obtain the following properties on Fisher information matrices
associated with the multi-agent sensing model (see [24], [26]).

Proposition 2.1. Let Assumption 2.1 hold. Then,
(1) For each n and θ ∈ RM , let In(θ) denote the Fisher

information matrix associated with the exponential family
{µθ

n}, i.e.,

In(θ) = −
∫
yn

(
∇2

θ

dµθ
n

dνn
(yn)

)
dµθ

n(yn), (12)

where the expectation integral is to be interpreted entry-
wise. Then, In(θ) is positive semidefinite and satisfies
In(θ) = ∇θ (hn(θ)) for all θ, with hn(·) denoting the
function

hn(θ) =

∫
yn∈RMn

gn(yn)dµθ
n(yn) ∀θ ∈ RM . (13)

(2) If, in addition, Assumption 2.2 holds, the global Fisher
information matrix I(θ), given by,

I(θ) = −
∫
y

(
∇2

θ

dµθ

dν
(y)

)
dµθ(y), (14)

is positive definite and satisfies

I(θ) = ∇2
θh(θ) =

N∑
n=1

∇2
θhn(θ) =

N∑
n=1

In(θ) (15)

for all θ ∈ RM .

For the multi-agent statistical exponential families under
consideration, the well-known Cramér-Rao characterization
holds, and it may be shown that the mean-squared estima-
tion error of any (centralized) estimator based on t sets of
observation samples from all the agents is lower bounded by
the quantity t−1I−1(θ∗), where θ∗ denotes the true value of
the parameter. Making t tend to∞, the class of asymptotically
efficient (optimal) estimators is defined as follows:

Definition 2.1. An asymptotically efficient estimator of θ∗ is
an {Ft}-adapted sequence {θ̂t}, such that {θ̂t} is asymptot-
ically normal with asymptotic covariance I−1(θ∗), i.e.,

√
t+ 1

(
θ̂t − θ∗

)
=⇒ N

(
0, I−1(θ∗)

)
, (16)

where =⇒ and N (·, ·) denote convergence in distribution and
the normal distribution respectively.



Centralized estimators that are asymptotically efficient for
the proposed multi-agent setting may be obtained using now-
standard results in point estimation theory. For instance,
the (centralized) maximum likelihood estimator is known
to achieve asymptotic efficiency; however, apart from being
centralized, the maximum likelihood estimator is realized in
batch form, i.e., requires access to the entire past observation
history at all times. To cope with this, extensive research has
focused on the development of time-sequential (but central-
ized) estimators based on recursively processing the agents’
observation data yt; asymptotically efficient recursive central-
ized estimators of the stochastic approximation type have been
developed by several authors, see, for example, [27]–[31], that
are asymptotically efficient. In contrast, in this paper, we take a
further leap and provide distributed recursive estimators which
ensure that each agent obtains an asymptotically efficient
estimator of θ∗.

3. ASYMPTOTICALLY EFFICIENT DISTRIBUTED
ESTIMATOR

In this section, we provide distributed sequential estimators
for θ∗ that are not only consistent but asymptotically optimal,
in that, the local asymptotic covariances at each agent coincide
with the inverse of the centralized Fisher information rate
I−1(θ∗) associated with the exponential observation statistics
in consideration. Specifically, the main idea in the proposed
distributed estimation methodology is to generate simultane-
ously two distributed estimators {x̆n(t)} and {xn(t)} at each
agent n; the former, the auxiliary estimate sequences {x̆n(t)},
are driven by constant (non-adaptive) innovation gains, and,
while supposed to be consistent for θ∗, are suboptimal in
the sense of asymptotic covariance. The consistent auxiliary
estimates are used to generate the sequence of optimal adaptive
innovation gains through another online distributed learning
procedure; the resulting adaptive gain process is in turn used to
drive the evolution of the desired estimate sequences {xn(t)}
at each agent n, which will be shown to be asymptotically
efficient from the asymptotic covariance viewpoint. As will
be seen below, we emphasize here that the construction of
the auxiliary estimate sequences, the adaptive gain refining,
and the generation of the optimal estimators are all executed
simultaneously.

A. Algorithms and Assumptions
The proposed optimal distributed estimation methodology

consists of the following three simultaneous update processes
at each agent n: (i) auxiliary estimate sequence {x̆n(t)}
generation; (ii) adaptive gain refinement; and (iii) optimal
estimate sequence {xn(t)} generation. Formally:
Auxiliary Estimate Generation: Each agent n maintains an
{Ft}-adapted RM -valued estimate sequence {x̆n(t)} for θ∗,
recursively updated in a distributed fashion as follows:

x̆n(t+ 1) = x̆n(t)− βt
∑

l∈Ωn(t)

(x̆n(t)− x̆l(t)) (17)

+αt (gn(yn(t))− hn(x̆n(t))) , (18)

where {βt} and {αt} correspond to appropriate time-varying
weighting factors for the agreement (consensus) and innova-
tion (new observation) potentials, respectively, whereas, Ωn(t)
denotes the {Ft+1}-adapted time-varying random neighbor-
hood of agent n at time t.

Optimal Estimate Generation: In addition, each agent n
generates an optimal (or refined) estimate sequence {xn(t)},
which is also {Ft}-adapted and evolves as

xn(t+ 1) = xn(t)− βt
∑

l∈Ωn(t)

(xn(t)− xl(t)) (19)

+αtKn(t) (gn(yn(t))− hn(xn(t))) . (20)

Note that the key difference between the estimate updates
in (17) and (19) is in the use of adaptive (time-varying) gains
Kn(t) in the innovation part in the latter, as opposed to static
gains in the former. Specifically, the adaptive gain sequence
{Kn(t)} at an agent n is an {Ft}-adapted RM×M -valued
process which is generated according to a distributed learning
process as follows.
Adaptive Gain Refinement: The {Ft}-adapted gain sequence
{Kn(t)} at an agent n is generated according to a distributed
learning process, driven by the auxiliary estimates {x̆n(t)}
obtained in (17), as follows:

Kn(t) = (Gn(t) + ϕtIM )
−1 ∀n, (21)

where, {ϕt} is a deterministic sequence of positive numbers
such that ϕt → 0 as t→∞, IM denotes the M ×M identity
matrix, and each agent n maintains another {Ft}-adapted
matrix-valued process {Gn(t)} evolving in a distributed fash-
ion as

Gn(t+ 1) = Gn(t)− βt (Gn(t)−Gl(t)) (22)
+αt (In(x̆n(t))−Gn(t)) (23)

for all t, with some positive semidefinite initial condition
Gn(0) and In(·) denoting the local Fisher information matrix,
see (12).

Assumption 3.1. The {Ft+1}-adapted sequence {Lt} of com-
munication network Laplacians (modeling the agent commu-
nication neighborhoods Ωn(t)-s at each time t) is temporally
i.i.d. with Lt being independent of Ft for each t. Further, the
sequence {Lt} is connected on the average, i.e., λ2(L) > 0,
where L = Eθ∗ [Lt] denotes the mean Laplacian.

Assumption 3.2. The weight sequences {βt} and {αt} satisfy

αt =
1

(t+ 1)
and βt =

b

(t+ 1)τ2
, (24)

where b > 0 and 0 < τ2 < 1/2.
Further, the sequence {ϕt} in (21) satisfies

lim
t→∞

(t+ 1)µ2ϕt = 0 (25)

for some positive constant µ2.

The following weak linear growth condition on the functions
hn(·) driving the (nonlinear) innovations in (17)-(19) will be
assumed:

Assumption 3.3. For each θ ∈ RM , there exist positive
constants cθ1 and cθ2 , such that, for each n, function hn(·)
in (13) satisfies the local linear growth condition,∥∥hn(θ′)− hn(θ)

∥∥ ≤ cθ1 ∥∥θ′ − θ
∥∥+ cθ2 , (26)

for all θ′ ∈ RM .



B. Main Results
We formally state the main results of the paper concern-

ing the performance of the proposed distributed estimation
scheme.

Theorem 3.1. Let Assumptions 2.2,3.1,3.3 and 3.2 hold.
Then, for each n the estimate sequence {xn(t)} is strongly
consistent. In particular, we have

Pθ∗

(
lim
t→∞

(t+ 1)τ ‖xn(t)− θ∗‖ = 0
)

= 1 (27)

for each n and τ ∈ [0, 1/2).

The consistency in Theorem 3.1 is order optimal in that (27)
fails to hold with an exponent τ ≥ 1/2 for any (including
centralized) estimation procedure.

The next result concerns the asymptotic efficiency of the
estimates generated by the proposed distributed scheme.

Theorem 3.2. Let Assumptions 2.2,3.1,3.3 and 3.2 hold. Then,
for each n we have√

(t+ 1) (xn(t)− θ∗) =⇒ N
(
0, I−1(θ∗)

)
, (28)

where N (·, ·) and =⇒ denote the Gaussian distribution and
weak convergence, respectively.

4. CONCLUSIONS

In this paper, we have addressed the problem of distributed
parameter estimation in multi-agent networks with generic
exponential family observation statistics. Under very weak
conditions on the global observability of the agent sensing
model and mean connectivity of the inter-agent communica-
tion network, we have provided distributed estimators which
guarantee consistent and asymptotically efficient (hence, as
good as the centralized) estimates at all agents. Natural
extensions involve extending the proposed consensus-plus-
innovations type architecture to related statistical inference
problems such as multi-hypothesis testing, generalized like-
lihood ratio detection in distributed multi-agent networks with
exponential family observation statistics, which we intend to
pursue in the future.
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