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ABSTRACT
In this paper, we introduce a novel class-dependent extension
of two-dimensional linear discriminant analysis (2DLDA)
named CD-2DLDA, applied in automatic speech recognition
using two-pass recognition strategy. In the first pass, the class
labels of test sample are obtained using baseline recogni-
tion. The labels are then used in CD transformation of test
features. In the second pass, recognition of previously trans-
formed test samples is performed using CD-2DLDA acoustic
model. The novelty of the paper lies in improvement of the
present 2DLDA algorithm by its modification to more pre-
cise, class-dependent estimations repeated separately for each
class. The proposed approach is evaluated in several scenar-
ios using the TIMIT corpus in phoneme-based continuous
speech recognition task. CD-2DLDA features are compared
to state-of-the-art MFCCs, conventional LDA and 2DLDA
features. The experimental results show that our method per-
forms better than MFCCs and LDA. Furthermore, the results
confirm that CD-2DLDA markedly outperforms the 2DLDA
method.

Index Terms— class-dependent transformation, discrim-
inant analysis, scatter matrix, time alignment

1. MOTIVATION AND BACKGROUND

Two-dimensional linear discriminant analysis (2DLDA) [1]
is a popular extension of classical linear discriminant analysis
(LDA). It was mainly proposed to overcome the singularity
problem in LDA implicitly, by redefining the data represen-
tation model. Recently, 2DLDA has been applied in several
application fields such as face recognition [1–3] and speech
recognition [4, 5].

Generally, discriminant analysis methods try to find trans-
formations that minimize the within-class scatter and maxi-
mize the between-class scatter of the training data. The trans-
formation can be computed in class-independent (CI) or class-
dependent (CD) manner. In CI approach, one global transfor-

The research presented in this paper was supported by the Research and
Development Operational Program funded by the ERDF under the projects
ITMS-26220220155 (50%) and ITMS-26220220182 (50%).

mation matrix is determined, which is used to transform the
data. This is the most used approach in linear transforma-
tions such as LDA or PCA (Principal Component Analysis).
In CD approach, contrary to the class-common methods, one
transformation matrix is determined for each class separately.
Different transformation spaces are constructed for different
classes [6]. CD transformations usually provide more precise
projections of the samples because the transformation matri-
ces are estimated with strong respect to the discrimination in-
formation contained in the corresponding class. In this way,
the samples are projected to several spaces, instead of one
global identical space constructed for all classes, which satis-
fies only for the statistical majority of samples.

Several class-dependent extensions of linear transforma-
tions were proposed in the past such as class-dependent PCA
to robust feature extraction [7]. Authors in [8] designed class-
dependent LDA for robust speech recognition or feature ex-
traction in face recognition [6]. However, 2DLDA has not
been extended to class-dependent approach yet. This fact
motivated us to explore this approach, especially in speech
recognition. We were also partially motivated by our pre-
vious work [9], where we investigated the performance of
2DLDA. In this paper, we modify classical 2DLDA proposed
by authors in [1] and introduce its new class-dependent ex-
tension. As in other class-dependent methods, the fundamen-
tal issue is the classification phase, where class labels have
to be assigned to test samples. In order to do this, we use
two-pass recognition strategy. In the first pass, time aligned
phoneme sequences are converted into labels that are used as
input to CD-2DLDA transformation. In the second pass, the
final recognition is performed on the transformed test sam-
ple with appropriate CD-2DLDA based acoustic model. Our
results confirm that CD-2DLDA achieves higher recognition
accuracies compared to 2DLDA.

The rest of this paper is organised as follows. In Sec-
tion 2, classical LDA and 2DLDA methods are reviewed. Sec-
tion 3 gives the detailed description of proposed CD-2DLDA
method. The experimental setup is given in Section 4. The ex-
perimental evaluation and discussion is presented in Section
5. Finally, the results are concluded in Section 6.



2. LDA AND 2DLDA ESTIMATION

2.1. Classical LDA

LDA is a well-known dimensionality reduction and trans-
formation method used in automatic speech recognition. It
maps the N -dimensional input data to p-dimensional sub-
space (p < N) while retaining maximum discrimination
information. The aim of LDA is to find a transformation
matrix W ∈ RN×p that projects each vector xi to vector
yi as yi = WTxi. In case of class-independent LDA, the
within-class scatter matrix SW and the between-class scatter
matrix SB are defined as:

SW =

k∑
i=1

∑
x∈Πi

(x− µi)(x− µi)
T , (1)

SB =

k∑
i=1

(µi − µ)(µi − µ)T , (2)

where µi = 1
ni

∑
x∈Πi

x are the class mean vectors and

µ = 1
n

∑k
i=1

∑
x∈Πi

x is the global mean vector. In speech
recognition, x represents a supervector created by concatenat-
ing of C basic feature vectors computed on successive speech
frames. The scatter matrices are estimated from the train-
ing data partitioned into k classes Πi, where class Πi con-
tains ni elements. Notice that n =

∑k
i=1 ni is the total

number of elements [4]. The transformation matrix W can
be obtained by solving the generalized eigenvalue problem
SBv = λSWv, for λ 6= 0, where v and λ represent the
eigenvectors and eigenvalues, respectively. W is finally ob-
tained by eigendecomposition of the matrix SWB = S−1

W SB .

2.2. Two-dimensional LDA

2DLDA was primarily designed to overcome the singularity
or undersampled problem in classical LDA implicitly [1]. The
key difference between LDA and 2DLDA is in the data rep-
resentation model. Different from LDA, in which the data is
represented in vector space, matrix representation is adopted
by 2DLDA [4]. 2DLDA alleviates the difficult computation
of the eigendecomposition of scatter matrices related to LDA.
Since it works with matrices instead of high-dimensional su-
pervectors, the eigendecomposition in 2DLDA is computed
on scatter matrices with much smaller sizes than in LDA. This
reduces the processing time and memory costs of 2DLDA
compared to LDA [1].

2DLDA aims at finding two transformation matrices L ∈
Rr×l1 and R ∈ Rc×l2 to project Xj to Yj ∈ Rl1×l2 as
Yj = LTXjR, j ∈ 〈1;n〉, where Xj ∈ Rr×c are matrix
represented training speech samples belonging to k classes
Πi. Xj represents a matrix composed from C concatenated
acoustic vectors computed on successive speech frames [4],
as in LDA.

Transformation matrices L and R can be obtained by
maximizing the Fisher ratio of between-class and within-
class scatter matrices after projection. The within-class and
between-class scatter matrix coupled with R are defined as:

SR
w =

k∑
i=1

∑
X∈Πi

(X −Mi)RR
T (X −Mi)

T , (3)

SR
b =

k∑
i=1

ni(Mi −M)RRT (Mi −M)T , (4)

and the within-class and between-class scatter matrix coupled
with L are defined as:

SL
w =

k∑
i=1

∑
X∈Πi

(X −Mi)
TLLT (X −Mi), (5)

SL
b =

k∑
i=1

ni(Mi −M)TLLT (Mi −M), (6)

where Mi = 1
ni

∑
X∈Πi

X is the i-th class mean matrix and

M = 1
n

∑k
i=1

∑
X∈Πi

X is the global mean matrix. Due to
difficult computing of optimal L and R simultaneously, au-
thors in [1] derived an iterative algorithm to find L and R by
iteratively fixing another one. The algorithm firstly computes
optimal L for fixed R using (3) and (4) by eigendecompo-
sition of

(
SR
w

)−1
SR
b . In the next step, with fixed L it com-

putes optimal R using (5) and (6) by eigendecomposition of(
SL
w

)−1
SL
b . The iterative procedure is several times repeated.

It should be noted that the sizes of scatter matrices in 2DLDA
are much smaller that those in LDA. Specifically, the size of
SR
w and SR

b is r× r and the size of SL
w and SL

b is c× c. More
detailed description can be found in [1].

3. CLASS-DEPENDENT TWO-DIMENSIONAL LDA

3.1. Description of CD-2DLDA

In this work, we were motivated by the model of class-
dependent LDA, in which the within-class scatter matrix is
separately computed and stored for each training class, while
the between-class scatter matrix is computed in the same
way as in class-independent LDA. Transformation matrix is
then separately determined by eigendecomposition of scatter
matrices for each class.

The key idea behind CD-2DLDA is to apply original
2DLDA algorithm separately to each class Πi to obtain
a couple of transformation matrices Li and Ri, while the
between-class matrices stay always the same. Li and Ri

are then used to transform the feature vectors with class la-
bel i. Using these assumptions, we define the class-dependent
within-class scatter matrix SR

wi
of class i coupled with R as:

SR
wi

=
∑

X∈Πi

(X −Mi)RR
T (X −Mi)

T (7)



and the class-dependent within-class scatter matrix SL
wi

of
class i coupled with L as:

SL
wi

=
∑

X∈Πi

(X −Mi)
TLLT (X −Mi). (8)

The class mean matrices Mi, the global mean matrix M and
between-class scatter matrices are computed in the same way
as in class-independent 2DLDA (see Section 2.2). Therefore,
instead of having one 2D transform (as in class independent
2DLDA), we have multiple transforms, one for each class.

3.2. Constraints and solutions

In case of CD-2DLDA (compared to CD-LDA) several prob-
lems arise. The first one is that transformation matrices Li

and Ri are computed by iterative estimation resulting from
2DLDA (see Section 2.2), while the transformation matrices
in CI-LDA or CD-LDA can be computed directly, without
using an iterative optimization. In order to extend 2DLDA
to CD-2DLDA, similar iterative algorithm is applied to each
training class Πi to obtain SL

wi
, SR

wi
, Li and Ri.

The second one is that the quality of scatter matrices SL
wi

,
SR
wi

, SL
b , SR

b and transformation matricesLi andRi markedly
depends on the number of iterations. We found out that suc-
cessful convergence of CD-2DLDA can be achieved when a
reasonable number of iterations is reached. We investigated
the quality of CD scatter matrices and we found that few iter-
ations are enough to convergence (the scatter and transforma-
tion matrices did not update during the next iteration).

Furthermore, the complexity of CD-2DLDA is more diffi-
cult because the algorithm considers k, (l1 × l2)-dimensional
spaces Li ⊗Ri, which are tensor products of two spaces [1].
In other words, there are two statistical estimators coupled
with Li and another two estimators coupled with Ri, instead
of two statistical estimators coupled with L or R in 2DLDA
or one statistical estimator coupled with Wi in CD-LDA. In
our case, the i-th class is represented by SL

wi
, SR

wi
, Li and Ri,

while SL
b and SR

b are the same for all classes.
Another limitation in the core algorithm of 2DLDA is that

L directly depends on estimation of SR
w , which is directly esti-

mated using initialR. In addition, R then directly depends on
estimation of SL

w , which is directly estimated using L, com-
puted previously. Due to these dependencies, matrices SL

b

and SR
b for CD-2DLDA can not be computed directly from

the data (as in CD-LDA). In other words, to estimate SL
b and

SR
b properly, 2DLDA has to be performed before the main

CD-2DLDA estimations. Note that only the training phase of
2DLDA without transformation of speech data is required.

3.3. Two-pass recognition based on CD-2DLDA

CD-2DLDA consists of two separate two-dimensional super-
vised transformations. The first one is the transformation of

training vectors, whose class labels are known from the em-
bedded training or forced alignment. Therefore, CD-2DLDA
transform can be simply applied with corresponding Li and
Ri. After 2D transform, we used the transformed training set
for HMM-based acoustic model training (see Section 4).

However, we had to modify the recognition step consider-
ably, because the class labels of test samples are not known.
In order to transform test samples in class-dependent manner,
their labels are needed to be known before the transformation
phase. We used two-pass recognition strategy to meet this
condition. The first pass is represented by classical recog-
nition step, in which the baseline acoustic model (see Sec-
tion 4) is used to determine the most likely hypotheses for
unknown speech recording in form of time aligned segments
on phoneme level. The resulting phone-based time alignment
is directly used to determine class labels of the current record-
ing. These labels are then provided to supervised CD-2DLDA
transformation of the recording. Subsequently, in the second
recognition pass CD-2DLDA-based acoustic model is used to
recognize the transformed recording finally. Note that the lan-
guage resources are not changed during recognition phases.

The CD-2DLDA algorithm with two-pass recognition can
be summarized in following steps (see Figure 1):
1. Compute Mi, M , SL

b and SR
b according to CI-2DLDA.

2. Compute CD-2DLDA parameters - for i from 1 to k, com-
pute SR

wi
, Li, SL

wi
and Ri iteratively with known Mi, M ,

SL
b and SR

b .

3. Transform the training set with Li and Ri according to
CD-2DLDA concept.

4. Train CD-2DLDA based acoustic model.

5. Perform first recognition pass with baseline acoustic
model and determine class labels of the test samples.

6. Transform the test samples using the labels with corre-
sponding Li and Ri according to CD-2DLDA concept.

7. Perform second recognition pass with CD-2DLDA acous-
tic model and recognize the transformed test samples.

4. EXPERIMENTAL SETUP AND CONDITIONS

In this work, we used the TIMIT acoustic phonetic speech
corpus to train and test our ASR system. For training and
testing, we used complete sets. Acoustic models were trained
using the provided phone segmentation. 61 original phones
were mapped to final inventory of 41 symbols.

The speech signal was preemphasized and windowed
every 10ms using Hamming window of length 25ms. Fast
Fourier transform and Mel filter-bank analysis with 20 chan-
nels were applied to the windowed segments. After applying
discrete cosine transform (DCT), 12 Mel-frequency cepstral
coefficients (MFCC) and the 0-th coefficient were retained.

In LDA and 2DLDA processing, 13-dimensional MFCC
vectors were used as input features. We used supervectors
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Fig. 1. Block diagram of the training and testing (recognition)
phase based on CD-2DLDA features.

in LDA with C = 3. In 2DLDA and CD-2DLDA we used
2D tokens composed from three basic vectors (C = 3), i.e.
r × c = 13 × 3. We performed dimension reduction. In
LDA, N = 39 LDA coeffs. were reduced to p = 13. In
2DLDA and CD-2DLDA, 2D tokens were reduced to vectors
with l1 = 13 and l2 = 1. In order to compare the base-
line and LDA, 2DLDA and CD-2DLDA ASR system regu-
larly, 13 LDA (2DLDA, CD-2DLDA) features were retained
after transformation and expanded with ∆ and ∆∆ coeffi-
cients. The acoustic models of baseline, LDA, 2DLDA and
CD-2DLDA system had the same dimension. The training
class labels were obtained from the phonetic alignment. The
number of classes k corresponded to 41 English phones con-
tained in the corpus for all discriminant analyses.

The ASR system used context-independent monophones
modelled using three-state left-to-right Hidden Markov Mod-
els (HMMs) on phone level. The number of Gaussian mix-
tures per state was a power of 2, starting from 1 to 32. The
number of monophone models corresponded to the number of
phonemes and LDA, 2DLDA and CD-2DLDA classes. The
recognition network was configured as a word network not
as a phone network. Therefore, the vocabulary size was ap-
prox. 6000 words. For testing, a word lattice was created
from a bigram language model [10]. HMM training, testing
and evaluation by HTK Toolkit [11] were performed.

In order to evaluate the experiments we chose the word-
level recognition accuracy computed asAcc. = H−I

N ×100%,
where H is the number correctly recognized words, I is the
number of insertions and N is the total number of labels [11].

Mixtures MFCC LDA 2DLDA CD-2DLDA FA
1 54.08 56.60 56.65 57.30 56.51
2 55.89 56.67 56.79 57.88 57.40
4 58.37 58.74 58.85 60.41 59.69
8 59.60 60.56 60.62 61.75 60.53
16 61.00 61.75 61.77 62.90 61.55
32 62.61 62.65 62.89 63.84 62.45

Table 1. Comparison of different speech recognition systems.

5. EXPERIMENTAL EVALUATION AND RESULTS

In this section, the proposed class-dependent approach to
2DLDA is experimentally evaluated and the results are being
presented. Table 1 gives the main comparison of recognition
accuracy of five ASR systems with different types of features:
1. Baseline ASR system: conventional 39-dim. MFCCs;

2. Conventional LDA: 39-dim. supervector composed from
three successive frames is reduced to 13-dimensional
LDA features and expanded with ∆ and ∆∆ coeffs.;

3. 2DLDA: similarly as in LDA, the feature matrix of dimen-
sion 13 × 3 is reduced to 2DLDA vector of dimension
13× 1 and expanded with ∆ and ∆∆ coeffs.;

4. CD-2DLDA: equally as in 2DLDA;

5. FA: equally as in 2DLDA; specific system used as align-
ment reference. It was used to evaluate CD-2DLDA on
test class labels resulting from the forced alignment (FA)
carried out using ortographic transcriptions and baseline
acoustic model. One of the goals in the experimental work
was to investigate the performance of CD-2DLDA based
on test labels obtained from the forced alignment.

From the Table 1 it can be seen that compared with the base-
line, LDA clearly improved the recognition performance.
Further, 2DLDA slightly improved the LDA performance
for all mixtures with the same model dimension, as was ex-
pected. The most important results are listed in the column
marked as ”CD-2DLDA”. Note that the listed results are the
maximum values obtained from CD-2DLDA transformations
using three different time alignments (from the first recogni-
tion pass). It is clear that CD-2DLDA consistently performed
better than 2DLDA for all Gaussian mixtures. The maximum
absolute improvement of 2DLDA achieved by CD-2DLDA
is +1.56% at 4 mixtures. The presented results are also
graphically compared in Figure 2.

In our experiments, we tested CD-2DLDA on several time
alignments resulting from the first recognition pass. During
comprehensive testing we found that the best results are pro-
duced by CD-2DLDA using alignments resulting from recog-
nition based on acoustic models with 32, 64 and 128 mix-
tures. Note that we have to differentiate the number of mix-
tures used in the main evaluation (1− 32) and the number of
mixtures used in the first pass to generate the time alignment
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(32−128). The comparison absolute improvement of 2DLDA
by CD-2DLDA depending on the number of mixtures used to
generate the time alignment is given in Figure 3. It is clear
that the most effective time alignments are the ones resulting
from the first pass with 64 and 128 mixtures. On average, the
absolute improvements are alternating around +1%.

Finally, from the table it can be seen that CD-2DLDA
based on FA did not perform very well. We expected that
FA will perform best because the time alignment was gener-
ated using the reference transcriptions. We suppose that the
alignment based on the correct transcription may not always
be automatically the best way to obtain the test labels. In real
applications, the FA system does not have any meaning be-
cause the correct reference alignment is not available. There-
fore, the result of this test does not have a big significance.

The number of iterations in 2DLDA and CD-2DLDA esti-
mation was equal to I = 10. All recognition phases were per-
formed with equal word insertion log probability (p = −8.0),
except the time alignment phases (p = −30.0).

6. CONCLUSION

In this paper we introduced a novel class-dependent ap-
proach to 2DLDA using two-pass recognition concept. We
have proven that the proposed method performs better than
2DLDA. Another upcoming direction in research related to

CD-2DLDA is to investigate its performance at higher num-
ber of mixtures. We want to apply it on more real-life corpora,
such as COSINE, etc. We would like to apply it also in Slovak
large vocabulary continuous speech recognition system.
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