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ABSTRACT

This paper proposes atomic norm formulation of octagonal
shrinkage and clustering algorithm for regression (OSCAR)
regularization. The OSCAR regularizer can be reformulated
using a decreasing weighted sorted `1 (DWSL1) norm (which
is shown to be convex). We also show how, by exploiting an
atomic norm formulation, the Ivanov regularization scheme
involving the OSCAR regularizer can be handled using the
Frank-Wolfe (also known as conditional gradient) method.

Index Terms— Group sparsity, atomic norm, Ivanov reg-
ularization, conditional gradient method, Frank-Wolfe algo-
rithm.

1. INTRODUCTION

In signal processing and machine learning, in the context of
sparse inference, much attention has been recently devoted,
not only to standard sparsity (usually enforced/encouraged by
the use of an `1 regularizer, often called LASSO [1]), but
also to notions of structured/group sparsity. Several group-
sparsity-inducing regularizers have been proposed in recent
years, including the group LASSO (gLASSO) [2], the sparse
gLASSO (sgLASSO) [3], the fused LASSO (fLASSO) [4], the
elastic net (EN) [5], the octagonal shrinkage and clustering
algorithm for regression (OSCAR) [6], and several others not
listed here due to space limitations (see a comprehensive re-
view by Bach et al [7]). However, the gLASSO (and its many
variants and descendants [7]) require prior knowledge about
the structure of the groups, which is a too strong requirement
in many applications. The fLASSO depends on a given or-
der of variables, making it much better suited to signal pro-
cessing applications than to variable selection and grouping in
machine learning problems, such as regression or classifica-
tion, where the order of the variables is usually meaningless,
and any regularizer should be invariant under permutations of
these variables. In contrast, the EN and OSCAR approaches
were proposed for regression problems and are not attached
to any specific ordering of the variables or to previous knowl-
edge about group structure.
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Fig. 1. Illustration of the OSCAR regularization.

The OSCAR regularizer (which has been shown to out-
perform EN in feature grouping [8]) is defined as

φλ1,λ2
OSCAR (x) = λ1 ‖x‖1 + λ2

∑
i<j

max {|xi| , |xj |} , (1)

where λ1 and λ2 are non-negative parameters (which, in prac-
tice, can be obtained, for example, using cross validation) [8];
the `1 norm and the pairwise `∞ penalty simultaneously en-
courage the components to be sparse and equal in magnitude,
respectively. Level curves of the OSCAR and LASSO regu-
larizers are shown in Figure 1.

The Tikhonov regularization formulation for a regression
problem with design matrix A ∈ Rm×n, under OSCAR reg-
ularization, has the form

min
x∈Rn

1

2
‖y −Ax‖22 + φλ1,λ2

OSCAR (x) (2)

and can be efficiently solved in [9] by several state-of-the-art
proximal splitting algorithms, such as the well known FISTA
[10], TwIST [11], SpaRSA [12], ADMM [13], SBM [14], and
PADMM [15].



As pointed out before [16], [17], it may happen that com-
ponents with small magnitude that should be shrunk to zero
by the `1 norm are also penalized by the pairwise `∞ term,
which may prevent accurate grouping; moreover, compo-
nents with large magnitude that should simply be grouped
by the pairwise `∞ norm are also shrunk by the `1 norm.
To overcome these drawbacks, we previously proposed the
SPARsity-and-Clustering (SPARC) regularizer [16], [17],
where the cardinality of the support of the solution is re-
stricted and the pairwise `∞ penalty is applied only to the
non-zero elements. The rationale behind this regularizer is
that it enforces K-sparsity and encourages the non-zero com-
ponents (and only those) to be pair-wise equal in magnitude.

However, the SPARC regularizer is non-convex while the
OSCAR regularizer is convex, and the convexity is the neces-
sary aspect for the atomic norm [18] whose favorable facial
structure makes it a useful convex heuristic to recover simple
models. In this paper, the OSCAR regularizer is reformulated
as a decreasing weighted sorted `1 (DWSL1) norm, and its
atomic norm formulation and dual norm are exploited. Fur-
thermore, we address the so-called Ivanov-type regularization
scheme [19],

min
x∈Rn

1

2
‖y −Ax‖22 , subject to φλ1,λ2

OSCAR (x) ≤ ε (3)

(ε is a positive parameter) using atomic norm tools. In par-
ticular, we show how to tackle problem (3) using the Frank-
wolfe (or conditional gradient) algorithm, with the help of the
atomic norm formulation of φλ1,λ2

OSCAR .

2. REFORMULATION OF THE OSCAR
REGULARIZER

Before proceeding, let us define the decreasing weighted
sorted `1 (DWSL1) norm as

Γw : Rd → R, Γw(z) = ‖w � z̀‖1 , (4)

where � denotes the component-wise product, z̀ is the vector
obtained from z by sorting its entries in decreasing order of
magnitude (with ties broken by an arbitrary fixed rule) and
w is vector of weights such that its components form a non-
increasing sequence:

w1 ≥ w2 ≥ · · · ≥ wd.

Let P(z) be the permutation matrix that sorts z into z̀, i.e.,

z̀ = P(z) z, (5)

which, of course, satisfies
(
P(z)

)−1
=
(
P(z)

)T
. Then, we

can write

Γw(z) = ‖w �
(
P(z) z

)
‖1 = ‖

(
(P(z))T w

)
� z‖1. (6)

The convexity of Γw and the fact that it is a norm are
given by the following two lemmas. We should point out that
similar results were very recently proved (using different ar-
guments) in [20].

Lemma 1 Γw : Rd → R is a convex function.

Proof: Let u,v ∈ Rd, θ ∈ [0, 1], z = θu + (1− θ)v, then
Γ (u) = ‖w � ù‖1 ,Γ (v) = ‖w � v̀‖1 ,Γ (z) = ‖w � z̀‖1,
where ù = P (u)u, v̀ = P (v)v, and z̀ = P (z) z. Thus,

Γw (z) = ‖
(
P(z)z

)
�w‖1

= ‖
(
P(z)(θu + (1− θ)v)

)
�w‖1

≤ θ ‖
(
P(z)u

)
�w‖1 + (1− θ) ‖

(
P(z)v

)
�w‖1

≤ θ ‖P(u)u�w‖1 + (1− θ) ‖
(
P(v)v

)
�w‖1

= θ Γw (u) + (1− θ) Γw (v)

where the first inequality is simply the triangle inequality and
the second one results from the following fact: if the en-
tries of b form a non-increasing non-negative sequence, then
‖P(c)a� b‖1 ≤ ‖P(a)a� b‖1, for any c.

Lemma 2 If w1 > 0, then Γw : Rd → R is a norm.

Proof: The positive homogeneity of Γw (that is, that Γw(αz) =
|α|Γw(z), for any α ∈ R) is obvious (and was in fact already
used in the proof of Lemma 1). The triangle inequality results
trivially from the convexity shown in Lemma 1, by taking
θ = 1

2 , combined with the positive homogeneity. Finally, we
need to prove that Γw(z) = 0⇔ z = 0; this is clearly true, if
w1 > 0, since it is clear that w1‖z‖1 ≥ Γw(z) ≥ w1‖z‖∞.

Our motivation to consider Γw results from the fact that
the OSCAR regularizer (as defined in (1)) is a particular case
of this norm [8], that is,

φλ1,λ2
OSCAR (x) = Γw(x), (7)

for w = [w1, w2, ..., wn]T given by

wj = λ1 + λ2(n− j). (8)

In the sequel, we assume that w is always as given by (8).

3. SOLVING IVANOV REGULARIZATION
PROBLEM INVOLVING OSCAR REGULARIZER

The Tikhonov regularization formulation in (2) is one of sev-
eral possible ways of using the OSCAR regularizer, and is the
only one that has been previously considered [8] [9]. A com-
mon alternative (known as Ivanov regularization [19]) adopts
a different criterion,

min
x∈Rn

1
2‖y −Ax‖22

subject to Γw(x) ≤ 1.
(9)



(notice that there is no loss of generality in taking 1 as the
upper bound for Γw(x) = φλ1,λ2

OSCAR (x); any other other non-
negative value can be absorbed by λ1 and λ2, equivalently
by the weights w1, ..., wn). Due to the convexity of Γw (see
Lemma 2), problems (9) and (2) are equivalent under addi-
tional mild conditions; however, it is sometimes more conve-
nient to address one rather than the other.

A classical algorithm that has recently seen a revival of
interest to address problems of the form (9) is the condi-
tional gradient method (CGM, also know as the Frank-Wolfe
method [21], [22]). Although there are three main variants of
CGM [22], the generic CGM for (9) is as follows (denoting
f(x) = 1

2‖y −Ax‖22 and D = {x ∈ Rn : Γw (x) ≤ 1}):

Algorithm CGM for (9)
1. Set i = 0 and x0 ∈ D.
2. repeat
3. di = arg mind∈D 〈d,∇f(xi)〉
4. γi = 2

i+2
5. xi+1 = (1− γi)xi + γidi
6. i← i+ 1
7. until some stopping criterion is satisfied.

The CGM is particularly convenient when the regularizer
is a so-called atomic norm [22]. We will now show how
Γw (x) can be written as an atomic norm and how that can
be exploited to efficiently implement the CGM.

3.1. Atomic Norm Formulation of Γw (x)

Let A ⊂ Rn (a collection of atoms), such that conv(A)
is compact, centrally symmetric about the origin (i.e., a ∈
conv(A) ⇒ −a ∈ conv(A)), and conv(A) contains a ball
of radius ε around the origin, for some ε > 0 [18]. Then, the
atomic norm of some x ∈ Rn induced by A is defined as

‖x‖A = inf {t > 0 : x ∈ t conv(A)} . (10)

For instance, takingA = {±ei} (the set of all the vector with
one component equal to +1 or −1 and all the others equal
to zero, which has cardinality 2n) yields ‖x‖A = ‖x‖1,
whereas for A = {−1, +1}n, we obtain ‖x‖A = ‖x‖∞.
The `2 norm is recovered if A is the (infinite) set of all unit
norm vectors. Atomic norms can also be defined for matrices
and other mathematical objects, and have recently been the
focus of considerable research interest (see the work of Chan-
drasekaran et al [18] and Jaggi [22], and references therein).

Next, we discuss the atomic formulation of Γw (x). Ob-
viously, due to the central symmetry property, we can focus
of the first (non-negative) orthant of Rn, where we claim that
the atomic set is given (in the general case) by

B̌ =

n⋃
i=1

B̌i (11)

where

B̌1 =



τ1
0
...
0

 ,


0
τ1
...
0

 , · · · ,


0
0
...
τ1


 ,

B̌2 =




τ2
τ2
0
...
0

 ,

τ2
0
τ2
0
...

 , · · · ,


0
...
0
τ2
τ2




,

...

B̌n−1 =




τn−1

τn−1

...
τn−1

0




τn−1

...
τn−1

0
τn−1

 , · · · ,


0
τn−1

τn−1

...
τn−1




and

B̌n =
{

[τn, τn, · · · , τn]
T
}
, (12)

where

τi =

 i∑
j=1

wj

−1

=

 i∑
j=1

[λ1 + λ2(n− j)]

−1

=
(
λ1i+ λ2 i

(
n− i+1

2

))−1

.

(13)

Notice that
∣∣B̌i∣∣ =

(
n
i

)
= n!/(i! (n − i)!), for i = 1, · · · , n,

thus the total number of atoms in the first orthant is∣∣∣ n⋃
i=1

B̌i
∣∣∣ =

n∑
i=1

(
n

i

)
= 2n − 1,

since all the B̌i are mutually disjoint.
To cover all the orthants, we consider all the possible sign

configurations of the non-zeros of each atom of each subset
B̌i. We denote the resulting sets as Bi; for example,

B1 =




τ1
0
0
...
0

 ,

−τ1

0
0
...
0

 ,


0
τ1
0
...
0

 ,


0
−τ1

0
...
0

 , · · ·

,

B2 =




τ2
τ2
0
...
0

 ,

−τ2
τ2
0
...
0

 ,


τ2
−τ2

0
...
0

 ,

−τ2
−τ2

0
...
0

 , · · ·

,



and so on. Consequently, since each element of B̌i contains i
non-zero components, the cardinality of the complete atomic
set (in the general case) is

|A| =
n∑
i=1

(
n

i

)
2i = 3n − 1.

Notice that if λ2 = 0, thus wi = λ1, we recover the `1
norm; in this case, τi = (i λ1)−1, thus B̌j ⊂ conv(B̌1), for
j = 2, ..., n, and A reduces to B1 [18].

Next, we prove that ‖x‖A is equivalent to Γw (x).

Lemma 3 For any x ∈ Rn, ‖x‖A = Γw (x).

Proof: Since ‖x‖A and Γw (x) are obviously homogeneous,
it suffices to show that ‖x‖A = 1 ⇔ Γw(x) = 1. Since
‖x‖A and Γw (x) are (in addition to homogeneous) also in-
variant w.r.t. permutations of the components of its argument,
we can assume without loss of generality that the compo-
nents of x satisfy x1 ≥ x2 ≥ · · ·xn ≥ 0. If ‖x‖A = 1,
then x ∈ conv(A), i.e., there exist θ1, θ2, · · · , θn ∈ [0, 1] and∑n
i=1 θi = 1, such that x =

∑n
i=1 θibi, where

bi = [τi · · · τi︸ ︷︷ ︸
i

0 · · · 0︸ ︷︷ ︸
n−i

]T ∈ B̌i,

that is

x = θ1


τ1
0
0
...
0

+· · ·+θn


τn
τn
τn
...
τn

 =



∑n
i=1 θiτi∑n
i=2 θiτi

...
θn−1τn−1 + θnτn

θnτn

 .
Consequently, the components of this x are given by

xk =

n∑
i=k

θiτi =

n∑
i=k

θi

 i∑
j=1

wj

−1

.

Then, computing the Γw norm of this x yields

Γw (x) =

n∑
k=1

wkxk =

n∑
k=1

wk

 n∑
i=k

θi

 i∑
j=1

wj

−1


= w1

(
θ1

w1
+

θ2

w1 + w2
+ · · ·+ θn

w1 + w2 + · · ·+ wn

)
+ w2

(
θ2

w1 + w2
+ · · ·+ θn

w1 + w2 + · · ·+ wn

)
+ · · ·+

wn−1

(
θn−1

w1 + w2 + · · ·+ wn−1
+

θn
w1 + w2 + · · ·+ wn

)
+ wn

(
θn

w1 + w2 + · · ·+ wn

)
=
θ1w1

w1
+
θ2 (w1 + w2)

ẁ1 + w2
+· · ·+θn−1 (w1 + w2 + · · ·+ wn−1)

w1 + w2 + · · ·+ wn−1

+
θn (w1 + w2 + · · ·+ wn)

w1 + w2 + · · ·+ wn
= θ1 + θ2 + · · ·+ θn = 1,

which shows that ‖x‖A = 1 ⇒ Γw(x) = 1. The reverse
implication is also easy to show, and actually it is just the
reverse process of above proof.

3.2. Dual Norm of Γw

We will now show that the dual norm of Γw, defined as

Γ∗w (x) = max
Γw(u)≤1

〈u,x〉 (14)

can be obtained via the atomic formulation, that is,

‖x‖∗A = max
‖u‖A≤1

〈u,x〉 = max
u∈conv(A)

〈u,x〉 = max
a∈A
〈a,x〉 .

(15)
Let x(k) ∈ Rk be a sub-vector of x ∈ Rn, consisting of the
k largest (in magnitude) elements of x (naturally,

∥∥x(1)

∥∥
1

=

|x1| = ‖x‖∞ and
∥∥x(n)

∥∥
1

= ‖x‖1). Then, we have

max
a∈B1

〈a,x〉 = τ1‖x(1)‖1 = τ1 ‖x‖∞

max
a∈B2

〈a,x〉 = τ2
∥∥x(2)

∥∥
1

...

max
a∈Bn−1

〈a,x〉 = τn−1

∥∥x(n−1)

∥∥
1

max
a∈Bn

〈a,x〉 = τn
∥∥x(n)

∥∥
1

= τn ‖x‖1

(16)

Combining (14), (15), and (16), yields the following lemma:

Lemma 4 The dual norm of Γw is given by

Γ∗w (x) = max
{
τk
∥∥x(k)

∥∥
1
, k = 1, · · · , n

}
. (17)

3.3. Solving Γw (x) Constrained Problems by Condi-
tional Gradient Method

We will now address in detail the problem of tackling (9) us-
ing the CGM (or Frank-Wolfe method [21], [22]), as already
introduced above, exploiting the atomic formulation of Γw.

The key step of the CGM is finding the conditional gra-
dient di (see line 3 of the CGM presented above). Using the
atomic norm formulation, denoting g = (−∇f(xi)), and re-
calling that D = {x ∈ Rn : Γw (x) ≤ 1}), we have

di = arg max
x∈D
〈x,g〉

= arg max
x∈conv(A)

〈x,g〉

= arg max
a∈A
〈a,g〉 .

(18)

The final maximization problem in (18) can be solved by the
following three steps:

s = sign(g)

k∗ = arg max
k∈{1,··· ,n}

{
τk
∥∥g(k)

∥∥
1

}
di = s� arg max

a∈B̌k∗
〈a, |g|〉 ,

(19)



where |g| is the vector with the magnitudes of the components
of g. The cost of implementing the conditional gradient step
is dominated by the O(n log n) cost of sorting the elements
of |g| (once per iteration) to obtain the several g(k).

4. CONCLUSIONS

We have proposed an atomic norm formulation of octagonal
shrinkage and clustering algorithm for regression (OSCAR)
for feature selection and grouping. We showed that the OS-
CAR regularizer can also be reformulated as a decreasing
weighted sorted `1 (DWSL1) norm and as an atomic norm.
Using the atomic norm formulation, we showed how to tackle
the the Ivanov regularization scheme with the OSCAR regu-
larizer via the conditional gradient method.
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