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ABSTRACT

The pressure to find efficient genomic compression algo-

rithms is being felt worldwide, as proved by several prizes

and competitions. In this paper, we propose a compression

algorithm that relies on a pre-analysis of the data before com-

pression, with the aim of identifying regions of low complex-

ity. This strategy enables us to use deeper context models,

supported by hash-tables, without requiring huge amounts

of memory. As an example, context depths as large as 32

are attainable for alphabets of four symbols, as is the case

of genomic sequences. These deeper context models show

very high compression capabilities in very repetitive genomic

sequences, yielding improvements over previous algorithms.

Furthermore, this method is universal, in the sense that it can

be used in any type of textual data (such as quality-scores).

Index Terms— Genomic data compression, hash-tables,

finite-context models

1. INTRODUCTION

Genomic DNA sequences are usually represented by elements

from an alphabet of four different symbols (called nucleotides

or bases), namely, Adenine (A), Cytosine (C), Guanine (G),

and Thymine (T), that store basic information of the living or-

ganisms. Nowadays, the genomics sequencing centers and the

scientific community are being flooded with genomic data [1].

In spite of the possibility that a transformative breakthrough

in storage technology occurs in the following years, the $1000

genome milestone is most likely to arrive before the $100

petabyte hard disk, mainly because the cost of disk storage

is steadily decreasing over time, not matching the dramatic

change in the cost and volume of sequencing. Therefore,

compression is a key to cope with this problem, specially

when the sequences share high homology rates.
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Moreover, the study of data compression algorithms, be-

sides the immediate aim of obtaining data reduction, provides

a means for discovering the structure of the data [2,3]. In fact,

the compression methods have underlying models that repre-

sent the data more efficiently. Hence, the better the compres-

sion, the better these models describe the information source

associated to the data [4].

Genomic sequences, besides being very heterogeneous

and non-stationary, have specific properties, such as inverted

repeats [5], that led general purpose algorithms to be sub-

stituted by several special purpose methods. However, they

only have started to be truly used almost after two decades

of the first special propose algorithm, Biocompress [6], has

been developed. Since Biocompress [6], several reference-

free genomic compression algorithms have been proposed

(see, for example, [7–18], and [19] for a recent review). With

the advances of sequencing techniques, specific file formats

emerged: FASTA (adding headers), FASTQ (mostly adding

headers and quality-scores), and others, creating the need for

specific compression tools [20–23]. Most of them rely on

a combination of existing models, such as Markovian and

Lempel-Ziv variants to handle diverse information channels.

From all the reference-free pure genomic compressors,

the most successful, in compression ratio, seems to be XM

[16], POMA [17] and DNAEnc3 [18]. Although XM and

POMA present good compression results, they are impractical

on current biological sequences (containing hundreds or thou-

sands of MB), mainly because their memory and time require-

ments are too high to run on common computers. DNAEnc3

presents a better balance between running resources and com-

pression results, being able to easily compress sequences with

hundreds of MB in a few minutes and using less than 3 GB of

memory. The method is based on multiple Markov models,

with variable context orders, that compete to encode every

block of the genomic sequence.

In this paper, we follow the line of DNAEnc3, exploring

two competing Markov models with a low and high context

order. However, unlike DNAEnc3, the proposed approach

rely on deep context orders and on a preprocessing analysis

to identify low complexity regions of the data. This strat-



egy allows the reduction of memory usage and, consequently,

allows to use deeper contexts that positively impact the com-

pression gain. Moreover, we adopt a variable input alphabet,

allowing this compressor to run in all textual sequence data

(i.e., with alphabets until 256 symbols). Furthermore, it is

very flexible, since it allows a variable multi-thread approach,

defined by the user, as well as the possibility of compressing

with hash-tables and decompressing with regular tables (or

vice-versa).

The remainder of this paper is organized as follows. In

Section 2, we present the method. In Section 3, we present the

results for compression of a few genomic sequences. Finally,

we draw some conclusions.

2. PROPOSED METHOD

2.1. Multiple finite-context models

Consider an information source that generates symbols, s,

from a finite alphabet A = {s1, s2, . . . , s|A|}, where |A| de-
notes the size of the alphabet. In the case of DNA data, A =
{A,C,G,T} and, therefore, |A| = 4. Also, consider that the
information source has already generated the sequence of n

symbols xn = x1x2 . . . xn, xi ∈ A. A Markov model, also

known as Finite-Context Model (FCM), assigns probability

estimates to the symbols of the alphabet, regarding the next

outcome of the information source, according to a condition-

ing context computed over a finite and fixed number, k > 0,
of the most recent past outcomes c = xn−k+1 . . . xn−1xn

(order-k FCM, with |A|k conditioning states) [24–26].

The probability estimates, P (Xn+1 = s|c), ∀s∈A, are

usually calculated using symbol counts that are accumulated

while the sequence is processed, which makes them depen-

dent not only of the past k symbols, but also of n (i.e., these

probability estimates are time varying).

The theoretical per symbol information content average

provided by the FCM after having processed n symbols is

given by

Hn = −
1

n

n−1∑

i=0

log2 P (Xi+1 = xi+1|c) bps, (1)

where “bps” stands for “bits per symbol”.

Applying an estimator α, we address the information con-

tent estimation process under the form

Pα(Xn+1 = s|c) =
nc
s
+ α

nc + α|A|
, (2)

where nc
s
represents the number of times that, in the past, the

information source generated symbol s having c as the condi-

tioning context and where nc is the total number of events that

has occurred so far in association with context c. Parameter α

allows balancing between the maximum likelihood estimator

and an uniform distribution. Note that when the total number

of events, n, is large, the estimator behaves as a maximum

likelihood estimator. For α = 1, (2) is the Laplace estimator.

Genomic sequences are non-stationary. In fact, one of the

reasons why most DNA encoding algorithms use a mixture of

two methods, one based on repetitions and the other relying

on low-order FCM, is to try to cope with the non-stationary

nature of the data. We also follow this line of reasoning, using

a low order FCM, typically 4, and a high order FCM that can

be, in the case of DNA data (4 symbols), up to 32, where the

high order context size depends on the size and repetitiveness

of the sequence as shown in the results section.

Accordingly, we explore an approach based on two FCMs

of different orders (low and high) that compete for encoding

the data, allowing a better handling of DNA regions with di-

verse characteristics. Figure 1 shows an example where the

two FCMs are used. In this example, each model collects sta-

tistical information from a context of depth k1 = 5 and k2 =
11, respectively. At time n, the two conditioning contexts are

c1 = xn−k1+1 . . . xn−1xn and c2 = xn−k2+1 . . . xn−1xn.

Fig. 1. Architecture of the two competitive FCMs. The prob-

ability of the next outcome,Xn+1, is conditioned by the k1 or

k2 last outcomes, depending on the FCM chosen for handling

a particular block. In this example, k1 = 5 and k2 = 11.

The competition between the two FCMs is held in the

evaluation process for non-overlapping blocks of fixed size,

such as 100 symbol blocks, which are then encoded by the

best estimated FCM. The binary stream with the information

of the respective FCM used in the compression of each block

is encoded using an adaptive order-0 model followed by arith-

metic coding.

2.2. Exploring high-order models using pre-analysis

Although the symbol counters for the low order FCM are

constantly accumulated in a table with 16 bits of precision,

the high order FCM requires two key approaches to maintain

reasonable memory resources and the possibility of exploring

deeper orders that might provide a better compression.

The first one is to use sequence pre-analysis, in order to

classify the data blocks into low or high information content,

reducing the number of them that otherwise would “pollute”

the hash or counter table with incorrect statistics. Therefore,

by applying this block-by-block analysis to the sequence, we



are able to determine the blocks with low and high informa-

tion content, and hence only update the high order model in

the low information content blocks. As such, in the com-

pression process, we can spend more memory than in the de-

compression process. If we do not have the resources on the

compression side, it is also possible to estimate these low and

high information content blocks by using a smaller context

order, only marginally reducing the performance. However,

we recall that the importance of resources is on the side of

the decompression phase and this is ensured to be light on

memory and time.

The second one, enhanced by pre-analysis, is to use high-

order hash-tables (indexes up to 264), mainly because when

implementing the FCM using simple tables the memory re-

quirements grow exponentially with k. For DNA data, and

considering 16 bits counters, this would imply about 39.4
zettabytes of memory for implementing an order-32 model.

However, this table would also be very sparse, because the

maximum number of different words of size k that can be

found in a sequence of length n is upper bounded by n. There-

fore, using hash-tables, it is possible to explore large order

FCMs having an approximate increase of memory propor-

tional to the size of the sequence if data are random. Repet-

itive data mitigate the memory consumption, which is usu-

ally the case for genomic data, given its repetitive nature (due

to homologous genes, transposons, centromeres, telomeres,

among others).

2.3. The encoding process

The symbolic sequence is processed from left to right (LR), in

order to create a binary sequence representing the blocks that

correspond to low information regions, as depicted in Fig. 2.

After that, from right to left (RL), the block sequence is up-

dated only when a block is marked as a low information re-

gion and when the block sequence had the previously index

marked in the LR as a high information block. This corre-

sponds to the maximum of the LR and RL cases.

Finally, the sequence block information is used to com-

press the sequence with the high-order FCM, which is asso-

ciated to the lower information content region blocks, and the

low-order FCM, that is associated to the higher information

content region blocks. In practice, the high-order FCM is

used to compress regions that can be evaluated as low infor-

mation content regions by orders lower or equal to its own.

DNA sequences are characterized by a property known

as the inverted repeats (IR) [5]. An inverted repeat is a sub-

sequence of nucleotides that is the reversed complement of

another sub-sequence. For example, the sub-sequence “ATA-

GAC” inverted repeat is known as “GTCTAT”. This partic-

ularity of DNA sequence data is used by most of the DNA

specific compression methods, in spite of additional model-

ing performance (specially in high orders). Therefore, the IR

are also explored in the high FCM (in the analysis and com-

Fig. 2. Block sequence profiles from 100 KBases of the hu-

man chromosome 22, processed in left-to-right mode (LR)

and right-to-left mode (RL), and computing the maximum of

LR and RL. Block value 0 indicates a low-order FCM (order-

4) while 1 a high-order FCM (order-16). The block size used

was 100. Filtering: Blackman window of size 10.

pression stages), where after encoding a symbol the respec-

tive sub-sequence IR counters are also updated in the same

model. Specifically, the high FCM is constituted by two com-

plete chains, the regular chain and the IR chain.

3. EXPERIMENTAL RESULTS

The experiments have been performed on a Linux server

running Ubuntu with 16 Intel(R) Xeon(R) CPU E7320 at

2.13 GHz and with 256 GB of RAM. The implementation, in

the C programming language, is publicly available at http:

//bioinformatics.ua.pt/software/highfcm/.

Three datasets have been used: Escherichia and Salmonella

(bacterial) collections from NCBI and a collection of 20

human chromosomes 22 (very repetitive) from the 1000

genomes project.

We have estimated only the best high order, as shown in

Fig. 3, where the compression ratios using different context

orders of the dataset are presented. As depicted, the high

context orders have a fundamental role in the compression,

namely in the larger sequence, since the best compression ra-

tio is achieved with the higher order (supported by the current

implementation).

Relatively to benchmark results, as shown in Table 1, in

the second and third sequences, the proposed approach has

the best compression ratio, compared to other existing tech-

niques, while it stands out in the last sequence (eukaryotic

genomic collections) with almost 50% reduction relatively

to DNAEnc3. Moreover, the memory spent and time usage,

in all sequences, seems to be reasonable since the maxi-

mum is only slightly higher than 3 GB. General purpose



Fig. 3. Compression ratios as a function of the variation of the

order of the deeper context, for all dataset sequences (static

low order: 4).

algorithms (Gzip, Bzip2, lzma) are not capable of handling

efficiently this type of sequences, while specific FASTA tools

(MFCompress and Deliminate) seem to be between general

purpose and pure reference-free algorithms (DNAEnc3, XM

and HighFCM). Although the XM method had the best com-

pression result in the first sequence (the smallest one), it spent

huge amounts of memory and time (both in compression and

decompression). Moreover, it was not able to handle larger

sequences, returning a runtime error.

4. CONCLUSION

We have seen that applying preprocessing analysis techniques

before compression can substantially improve the savings in

memory resources, particularly in the decompression process.

Moreover, these savings, together with appropriate high-order

hash-tables, yield tremendous improvements in the compres-

sion ratio, specially in highly repetitive genomic sequences.

The proposed asymmetric compressor is also able to han-

dle any textual sequences (up to 256 symbols). Furthermore,

it is able to parallelize the tasks, allowing faster compression

modes, at the expense of a small reduction in the compression

ratio.
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