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ABSTRACT
In this paper, a novel approach is proposed for estimating

the number of sources and for source separation in convolu-

tive audio stereo mixtures. First, an angular spectrum-based

method is applied to count and locate the sources. A non-

linear GCC-PHAT metric is exploited for this purpose. The

estimated channel coefficients are then utilized to obtain a

primary estimate of the source spectrograms through binary

masking. Afterwards, the individual spectrograms are decom-

posed using a Bayesian NMF approach. This way, the number

of components required for modeling each source is inferred

based on data. These factors are then utilized as initial values

for the EM algorithm which maximizes the joint likelihood of

the 2-channel data to extract the individual source signals. It

is shown that this initialization scheme can greatly improve

the performance of the source separation over random initial-

ization. The experiments are performed on synthetic mixtures

of speech and music signals.

Index Terms— Blind Source Separation (BSS), Bayesian

Non-negative Matrix Factorization(NMF), Marginal Maxi-

mum Likelihood (MML), Expectation-Maximization (EM)

1. INTRODUCTION

Demixing the audio signals has found many applications in

several fields including polyphonic music source separation

and transcription, speaker diarization and meeting transcrip-

tion. Non-negative Matrix Factorization (NMF) has been

applied extensively to various source separation scenarios

in a single channel [1–3] and multichannel [4, 5] setting.

In [5], a Non-Negative Tensor Factorization (NTF) struc-

ture is utilized for decomposing the magnitude spectrogram

(Short Time Fourier Transform (STFT) representation) of

the mixture signal into spectral components, time activations

and channel mixing coefficients. The approach is suitable

for instantaneous mixtures. In [4], the performance of the

EM algorithm for maximizing the joint likelihood of multi-

channel data is explored. In [6], an extension of the complex

matrix factorization method introduced in [7] is applied. The

so called W-disjoint orthogonality of sources is presumed

in [6]; This means that only one dominant source is assumed

active in each time-frequency(TF) cell of the mixture signal

STFT. This can be regarded as a sparsity assumption in the

TF representation that might work for speech sources but is

generally not valid for music.

The main disadvantage of the above methods is that the

number of the sources as well as the number of the com-

ponents used for modeling each source are assumed known

and pre-defined. However, in practice, we may need to es-

timate them based on data. Here, we aim to overcome the

mentioned drawbacks. Furthermore, in order to preserve the

applicability of the algorithm to audio signals in general, our

proposed source separation method doesn’t rely on the spar-

sity assumption stated in [6]. In the first stage, we intend to

estimate the number of the sources and channel mixing coef-

ficients. This goal is achieved by evaluating an angular spec-

trum which is acquired from a non-linear Generalized Cross

Correlation with Phase Transform (GCC-PHAT) metric cal-

culated for individual TF cells of the spectrogram.

The task of source separation is addressed using the same

EM method proposed in [4]. Our work differs from [4] in

two aspects: First, we don’t assume a pre-defined number of

sources or model components and try to infer them based on

the observed data. The second difference is related to our pro-

posed initialization scheme which results in significant per-

formance improvement. The primary estimated source power

spectrograms derived from a binary masking technique are

decomposed into two matrices containing the spectral com-

ponents and time activations. A Bayesian NMF framework

is exploited for this purpose which enables us to infer the

number of components required to model each source. This

is made possible by evaluating the Marginal Log-likelihood

function against a range of model order values and finding

the knee point. The Maximum Marginal Likelihood Estima-

tion (MMLE) approach introduced in [8] is applied. A Pois-
son-Gamma generative model is assumed for the power spec-

trogram of the mixture signal. The efficiency of this Bayesian

approach for inferring the optimal model order has already

been investigated in [9]. Consequently, the obtained factors

are used as initial values of the EM algorithm for extracting

the individual source complex STFT representation. Time-



domain signals are easily derived through an inverse STFT

operation.

The received mixture signal STFT based on the far-field

assumption can be stated as follows:

Xift =

J∑
j=1

Sjftaijf + nift , i = 1, 2 (1)

where Xift denotes the complex value of the mixture signal

STFT in frequency bin f and time frame t for ith channel. nift

can be representative of ambient noise or reverberation effects

due to the room acoustics. aijf = exp(
j2πdf(i−1) cos(θj)

c ) is

the channel mixing coefficient. d is the distance between the

two microphones, c is the sound propagation velocity. θj de-

notes the angle of arrival for source j with respect to the mi-

crophone array axis. Sjft is the complex contribution of each

source in each TF bin and J is the total number of sources.

The rest of the paper is organized as follows: Section 2

is dedicated to the source counting and localization tasks.

In section 3, the binary masking scheme and the proposed

Bayesian NMF decomposition approach for inferring the

components needed for modeling each source are explained.

Afterwards, the EM framework is described in this section.

The experiments and discussion on the results are presented

in section 4. Section 5 concludes.

2. SOURCE COUNTING AND CHANNEL
ESTIMATION

In order to estimate the angle of arrival of the source signals,

we compute a metric against a range of angle of arrival(AOA)

values θ aligned uniformly in the interval [0, π]. First, we

evaluate the following function based on GCC-PHAT [10] in

each TF bin against θ values:

R(f, t, θ) = real(
X1ftX

∗
2ft∣∣∣X1ftX∗
2ft

∣∣∣ exp(
j2πdf cos(θ)

c
)) (2)

where * denotes the conjugate operation. For increasing

the spatial resolution, a monotonically decreasing non-linear

function in the range [0, 1] is applied to the GCC-PHAT

metric based on what is proposed in [11]:

M(f, t, θ) = 1− tanh(α
√

1−R(f, t, θ)) (3)

where α is the non-linearity parameter. This non-linear func-

tion makes the algorithm more effective in reverberant envi-

ronments because it results in sharper peaks corresponding to

the true source AOAs. To obtain the final angular spectrum,

F (θ), a summation over all frequency bins and a maximiza-

tion over all time frames is performed:

F (θ) = max
t

∑
f

M(f, t, θ) (4)

To purify the angular spectrum, it can be obtained based

on the TF cells which more probably correspond to one domi-

nant active source. This way, the true peak levels correspond-

ing to the actual source AOAs are enhanced and consequently

diminish the effect of the spurious peaks. For identifying the

mentioned cells, the following weighting function is intro-

duced:

λ(f, t) =

⎧⎨
⎩ 1

{ ||X1ft| − |X2ft|| < γ1
(|X1ft|+ |X2ft|) > γ2

0 otherwise

(5)

where γ2 = max
t

(
mean

f
(|X1ft|+ |X2ft|)

)
and γ1 is set to

10−5. The first condition in (5) is necessary for cells with

one dominant source and the second one eliminates the con-

tribution of the cells with relatively smaller magnitude. The

metric expressed in (3) is then multiplied by this weighting to

provide an improved angular spectrum.

Subsequently, a peak finding algorithm is applied to F (θ)
to obtain the number of sources and AOAs. First the mini-

mum value of the angular spectrum F (θ) is subtracted and

then it is normalized, i.e. the vector is divided by its maximum

value. Afterwards, two constraints on the minimum distance

between the peaks and minimum peak height can eliminate

irrelevant peak locations found by the peak finder algorithm.

Here, we put the threshold for minimum peak height to 0.55

and for minimum peak distances to 5 degrees. These choices

have led to optimum performance empirically even in rever-

beration conditions.

3. SOURCE SEPARATION

In this section, the estimated AOAs from the previous stage

are utilized to extract the individual source signals. A pri-

mary estimation of each source complex spectrogram is con-

structed via binary masking. Then, a Bayesian MMLE ap-

proach is applied to each source spectrogram to infer the com-

ponents required for modeling each source. The spectral com-

ponents and time activations obtained in this stage along with

the channel mixing coefficients given by the previous stage

will construct the initial values of the parameters for the EM

algorithm which accomplishes the source separation task.

3.1. Binary masking

Knowing the channel mixing coefficients, source separation

can be done using TF masking techniques [12, 13]. For bi-

nary masking, we discriminate the dominant active source in

each TF bin by evaluating the M function of (3) for the esti-

mated AOA values found in the previous step and choosing



the source that maximizes this metric:

iBM (f, t) = max
j

M(f, t, θj) j = 1...J

SBM
iBM (f,t)ft

= X1ft

SBM
jft

= 0 ∀j �= iBM (f, t)

(6)

where iBM (f, t) specifies the index of the recognized domi-

nant source in frequency bin f and time frame t. SBM
jft

denotes

the complex spectrogram of the jth separated source.

3.2. Bayesian MMLE framework

The power spectrogram of the individual sources separated

through binary masking are factorized according to the fol-

lowing Bayesian generative model:

vjft ∼ Poisson(vjft|
Kj∑
k=1

wjfkhjkt)

hjkt ∼ Gamma(hjkt|αjkt, βjkt)

(7)

where the involved distributions are defined by Poisson(x|λ)
= e−λ λx

Γ(x+1) and Gamma(x|α, β) = [βαΓ(α)]
−1

xα−1e
−x
β

respectively. vjft denotes the power spectrogram
∣∣∣SBM

jft

∣∣∣2,

and Kj is the total number of model components of the jth

source. To impose sparsity, the elements of the activation ma-

trix Hj are taken with Gamma prior distribution. To avoid

overfitting, the Bayesian MMLE scheme was proposed in [8]

which has been shown to automatically prune out irrelevant

components (columns) of the Wj matrix, hence being capa-

ble of estimating the proper model order [9]. The elements

of the Wj matrix containing the spectral components of the

jth source are assumed deterministic. The log-likelihood is

integrated over the Hj parameters and the obtained marginal

log-likelihood to be maximized is:

CML(W) = logP (V|W ) = log

∫
H

P (V|W,H)P (H)dH

(8)

Since this integral is intractable, a lower bound on the

marginal log-likelihood is maximized. For estimating the

parameters, a variational Bayesian approach can be utilized.

The update equations can be found in [8]. For finding the

optimal model order, Kj , the lower bound of the marginal

log-likelihood is evaluated against different order values. The

knee point of the resulted graph specifies the proper model

order [9]. This way, the number of components required

for modeling each source and the components themselves

are adaptively inferred based on binary masked separated

sources.

3.3. Joint likelihood maximization using EM

The Wj and Hj components obtained in the previous subsec-

tion are applied as initial values of the EM algorithm in this

stage. The initial value of the channel mixing coefficients is

taken as ajf = [1 exp(
j2πdf cos(θj)

c )]T where θj denotes the

estimated AOA of the jth source. The framework proposed

in [4] is considered in which complex random variables Sjfn

of each source are assumed to be a sum of Kj components:

Sj,ft =
∑
k∈Kj

ck,ft ck,ft ∼ NC(0, wfkhkt) (9)

where Nc is the proper complex Gaussian distribution. The

components are assumed mutually independent and individu-

ally independent across frequency f and frame t, so we have

[4]:

Sj,ft ∼ NC(0,
∑
k∈Kj

wfkhkt) (10)

A stationary and spatially uncorrelated noise model is pre-

sumed such that nift ∼ NC(0, σ
2
if ), Σn,f = diag([σ2

if ]i).
The set of all unknown parameters Z = {A,W,H,Σn}
including channel mixing coefficients, spectral components,

time activations and noise covariance matrices are obtained

by ML estimation which is solved via the EM algorithm. Iter-

ative update relations can be found in [4]. The Complex STFT

of the sources are ultimately obtained by the Minimum Mean

Square Error (MMSE) estimate, Ŝ
jft

= E[Sjft|Xft;Z]
where Xft denotes the observed stereo mixture complex

spectrogram.

The EM algorithm is very sensitive to parameter initializa-

tion. We have overcome this by introducing an effective ini-

tialization scheme. Furthermore, the proper number of com-

ponents per source is chosen through an automatic model or-

der selection using the Bayesian NMF model proposed in sub-

section 3.2.

4. EXPERIMENTS

The experiments are performed on synthetic stereo mixtures

of speech and music signals taken from dev2 dataset of the

SiSEC’08 ”under-determined speech and music mixtures”

task [14]. The sampling frequency is 16 kHz. The time dura-

tion of all individual sources is 10s. The STFT is computed

with half-overlapping sine windows of length 1024. Three

source signals are synthetically mixed based on the far-field

model given in (1). Here, we consider noiseless condition.

The source directions w.r.t the microphone array axis are

taken [20◦ 60◦ 110◦]. Microphone spacing is equal to 10

cm. The angular spectrum is calculated for 180 uniformly

spaced angles in the range [0, π]. The non-linearity parameter

α is taken equal to 10. Applying the constraints to the peak

finder algorithm lead to the estimated AOA values perfectly

matched with the true ones.

The primary estimation of the individual source com-

plex spectrograms is given by applying the binary masking

technique. Then, the Bayesian NMF method is utilized to

factorize the obtained power spectrograms. The variational



Bayesian algorithm is executed for the order values between

1 and 20 and the lower bound of marginal log-likelihood is

plotted against model order. Then, the number of compo-

nents required for modeling each source is implied through

finding the knee point of this graph. The number of itera-

tions for the variational inference algorithm is set to 1000.

The impact of local optima was alleviated by executing the

algorithm 10 times and choosing the results corresponding

to the largest likelihood lower bound. For Bayesian NMF,

the initial values of the Wj elements are taken as absolute

value of a random normal variable (with mean 0 and variance

1) plus 1. Initial values of the shape, αjkt and scale, βjkt

hyperparameters of the Hj matrix prior distribution are set to

1. The log-likelihood lower bound is depicted in Figure 1 for

the wdrums sources. To avoid an ad hoc method to determine

the knee point of the graph, we exploit Bayesian Information

Criterion (BIC) metric defined as:

BIC = −2LB +NP log(Nobs) (11)

where LB represents the log-likelihood lower bound, NP de-

notes the number of model parameters and Nobs is the num-

ber of observed samples associated with each value of LB.

The order value corresponding to the minimum obtained BIC

metric is taken as the optimal number of model components.

The inferred orders for wdrums sources are 4, 9 and 5 re-

spectively. The same task is carried on for the nodrums and

the male speech sources. The estimated optimal order values

are 7,4,8 and 10,11,12 respectively. It can be seen that more

components are needed to model speech sources.

1000 iterations of the EM algorithm are then executed for

extracting the final complex spectrogram of each source. The

simulated annealing strategy proposed in [4] is applied for

updating σ2
if in each iteration. Commonly used performance

measures including Signal to Distortion Ratio (SDR), Signal

to Interference Ratio (SIR) and Signal to Artifact Ratio (SAR)

are calculated [15]. The results are listed in Tables 1-3 for

speech and music mixtures. The performance improvement

through the proposed initialization scheme is manifested es-

pecially for music mixtures. For random initialization, the

number of model components per source is taken equal to

10. The initial values of the elements of the factors W and

H in this case, are taken as absolute value of a random nor-

mal variable (with mean 0 and variance 1) plus 1. The sig-

nificant lower performance achieved by random initialization

for music signals probably originates from overfitting or local

optima issues.

5. CONCLUSION

In this paper, a three stage approach was introduced for sepa-

rating the sources in a stereo convolutive mixture scenario. In

the first stage, the number of sources and the channel mixing

coefficients are estimated by finding the peak locations of an
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Fig. 1. Log-likelihood lower bound evaluated vs. model order

for wdrums sources

Male speech signal

S1 S2 S3

Proposed initialization

SDR(dB) 8.92 12.1 16.41

SIR(dB) 15.6 23.5 23.64

SAR(dB) 10.1 12.45 17.33

Random initialization

SDR(dB) 5.93 8.27 13.56

SIR(dB) 14.76 12.31 16.32

SAR(dB) 6.85 11.48 17.1

Table 1. BSS evaluation metrics for male speech data.

nodrums

S1 S2 S3

Proposed initialization

SDR(dB) 12.4 8.4 6.19

SIR(dB) 15.52 19.16 13.9

SAR(dB) 15.4 8.83 7.21

Random initialization

SDR(dB) 0.96 -1.08 -8.14

SIR(dB) 7.43 0.53 -7.22

SAR(dB) 2.7 6.73 7.03

Table 2. BSS evaluation metrics for nodrums data.

wdrums

S1 S2 S3

Proposed initialization

SDR(dB) 1.26 6.87 25.34

SIR(dB) 2.69 19.36 32.72

SAR(dB) 10.64 9.05 33.13

Random initialization

SDR(dB) -5.73 1.39 11.8

SIR(dB) -4.5 9.95 12.73

SAR(dB) 5.18 2.45 19.22

Table 3. BSS evaluation metrics for wdrums data.



angular spectrum derived from non-linear GCC-PHAT met-

ric. The mixing coefficients are then exploited in the second

stage to obtain binary masks separating the complex spectro-

gram of the sources. The primary source power spectrograms

given by binary masking are then individually decomposed

through a Bayesian NMF approach, thus the number of com-

ponents required for modeling each source is estimated adap-

tively and is not assumed pre-defined. Automatic model or-

der selection accomplished in this stage is of great importance

because it avoids an overfitted or underfitted model. For in-

stance, speech signals generally need more components than

music sources.

The decomposed factors are then employed as initial val-

ues in the third stage (EM algorithm). It has been shown that

this initialization scheme can enhance the performance drasti-

cally compared to the random initialization. By applying the

proposed effective initialization approach, the high sensitivity

of the EM algorithm to parameter initialization is alleviated.

This is demonstrated by evaluating the BSS metrics after ap-

plying the proposed method to the synthetic convolutive mix-

tures of speech and music.
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