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ABSTRACT
The recent introduction of high dynamic range (HDR) video
cameras has enabled the development of image based lighting
techniques for rendering virtual objects illuminated with tem-
porally varying real world illumination. A key challenge in
this context is that rendering realistic objects illuminated with
video environment maps is computationally demanding.

In this work, we present a GPU based rendering system
based on the NVIDIA OptiX [1] framework, enabling real
time raytracing of scenes illuminated with video environment
maps. For this purpose, we explore and compare several
Monte Carlo sampling approaches, including bidirectional
importance sampling, multiple importance sampling and se-
quential Monte Carlo samplers. While previous work have
focused on synthetic data and overly simple environment map
sequences, we have collected a set of real world dynamic en-
vironment map sequences using a state-of-art HDR video
camera for evaluation and comparisons. Based on the result
we show that in contrast to CPU renderers, for a GPU im-
plementation multiple importance sampling and bidirectional
importance sampling provide better results than sequential
Monte Carlo samplers in terms of flexibility, computational
efficiency and robustness.

Index Terms— Image Based Lighting, HDR Video,
Video Based Lighting

1. INTRODUCTION

Image based lighting (IBL) [2] enables photo-realistic ren-
dering and seamless integration of virtual objects into pho-
tographs and videos captured in real scenes. This is carried
out by driving the lighting simulation during rendering us-
ing illumination captured in the real scene, using carefully
calibrated high dynamic range (HDR) images. Traditional
approaches capture a single panoramic image to represent
the incident illumination in the scene [2, 3]. While a sin-
gle panoramic image works well for still images, seamless
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integration of rendered objects into video footage requires
capturing the temporal variations in the illumination. This
requirement has entailed the development of IBL methods
using panoramic HDR video to capture the scene illumina-
tion as a sequence of environment maps [4, 5].

However, realtime rendering with such video based light-
ing techniques has previously been limited to diffuse mate-
rials and low-frequency illumination [4, 6]. In this work, we
show how realtime raytracing in the OptiX [1] framework can
be used to render glossy materials in high-frequency video
environment maps. To this end, we explore both approaches
sampling each frame separately [7, 8] and an approach that
exploit the correlation among frames using sequential Monte
Carlo (SMC) samplers [9].

We focus the comparison on realtime HDR video se-
quences captured using a state-of-the art HDR video camera.
These sequences pose several challenges as that they reflect
a much wider range of possible temporal variation than pre-
viously considered. The main contributions of this work
are

• A GPU based solution for realtime raytracing using video
environment map illumination.

• Evaluation and comparison of Monte Carlo estimators for
rendering with video environment map illumination.

2. CAPTURING HDR VIDEO PANORAMAS

To represent the incident illumination, we capture light probe
images for each frame by utilizing a standard non-central
catadioptric imaging system based on a near orthographic lens
and a mirror ball, depicted in Figure 1. To efficiently match
the captured incident illumination to a synchronized back-
plate sequence, we use a consumer video camera mounted
on top of the HDR camera capturing the light probe. This
arrangement enables high-resolution background footage, but
incurs a small error if considerable spatial variations in the
incident illumination is present.

To accurately capture the full dynamic range of the inci-
dent illumination varying over time in a video light probe, we
rely on recently developed HDR video technology [10]. At
present, there exist a multitude of different methods for cap-
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Fig. 1: The video light probe is captured using a multi-sensor
HDR video camera synchronized to a high resolution back-
plate video camera.

turing HDR video. Many of these are of limited use for a ver-
satile IBL pipeline, as they often still can not accurately cap-
ture the complete dynamic range of an outdoor environment
containing direct sunlight and deep shadows. Instead, many
commercially available HDR video cameras are in practice
limited to 15-17 f-stop. Arguably, the currently best HDR
video camera systems for temporal IBL in terms of resolu-
tion, noise characteristics, and overall image quality are based
on setups with multiple, synchronized sensors that simulta-
neously capture different exposures of the scene. For this
work, we use a state-of-the-art multi-sensor HDR video cam-
era [11, 12] developed by Linköping University and Spheron
VR, capable of capturing a dynamic range of 24 f -stops.

Before further processing, the light probe images are sta-
bilized, removing vibrations in the light probe relative to the
camera, so that the camera lens is in the center of the light
probe images. The light probes are then converted into a lat-
itude longitude mapping, color corrected to match the back-
ground footage and blurred slightly in the hidden directions
directly behind the light probe, for details of this process see
section 7.4.1 in [13].

3. RENDERING

The reflected radiance Lr(x, ωo, t) leaving a point x on a sur-
face in direction ωo at frame t is given by

Lr(x, ωo, t) =

∫
Ω

Lt(x, ω)ρ(x, ωo, ω)V (x, ω)(ω · n)dω,

(1)

where Ω denotes the visible hemisphere, Lt(x, ω) is the in-
cident radiance arriving at the point x from direction ω for
frame t. Here, ρ(x, ωo, ω) is the bidirectional reflectance dis-
tribution function (BRDF), V (x, ω) is a binary visibility func-
tion and n denotes the surface normal.

In this work, we are concerned with the case where
Lt(x, ω) is represented by a HDR environment map de-
scribing the incident radiance onto the objects in the scene.
To render an animation we use a separate environment

map representing the incident illumination at each frame,
L1(x, ω), L2(x, ω), ....

The integral in (1) is often evaluated using Monte Carlo
importance sampling. For the static case, treating each frame
separately, several different importance functions have been
investigated in previous work. Approaches sampling propor-
tional to the BRDF [14] performs better for glossy materials
in low-frequency environments. When the environment map
contains high-frequency content, environment sampling ap-
proaches [15] performs better. In scenes possibly containing
both glossy BRDFs and high frequency environment maps,
approaches sampling proportional to the product [8] are nec-
essary for efficient rendering.

Relighting applications using video environment maps
also enables utilizing the correlation among frames. Havran
et al. [4] considered temporal filtering of the samples pro-
posed from the environment maps in each frame, but their
approach can lead to overly smooth results. Other approaches
have focused on off-line rendering when the complete se-
quence of environment maps are available by stratifying
samples from the environment map sequence in both the spa-
tial and temporal domain [16]. Ghosh et al. [9] proposed
to propagate a carefully tuned approximation of the product
between the BRDF and the environment map between frames
using an SMC sampler. Using a CPU renderer they were able
to show reduced variance compared to other approaches in
equal computational time.

In this work, we focus on approaches that enable render-
ing general material appearance under a range of different
illumination conditions, including both high and low fre-
quency illumination. For this purpose we have chosen to
investigate three representative approaches. The simplest and
most widespread is multiple importance sampling (MIS) [7],
efficiently combining samples proposed from the BRDF and
the environment map in each frame. The second, bidirectional
importance sampling is a product sampling approach [8],
proposing samples from the product of the BRDF and the
environment map. Finally we also compare these approaches
which treat each frame separately to the approach by Ghosh
et al. [9] which exploits the correlation among frames using
SMC samplers.

4. MULTIPLE IMPORTANCE SAMPLING

To estimate the reflected radiance, MIS combines samples
from both the environment map and the BDRF [7]. The re-
sult is a robust method that can handle both glossy materials
and high frequency illumination. Drawing Nρ samples from
the BRDF and NL samples from the environment map, the
MIS estimator of the reflected radiance (1) using the balance



heuristic [7] is given by

L̂MIS =

Nρ+NL∑
i=1

Lt(x, ω
i)ρ(x, ωo, ω

i)V (x, ωi)(ωi · n)

qρ(ωi) + qL(ωi)
,

(2)

where qρ(ωi) is the importance function used to draw sam-
ples proportional to the BRDF and qL(ωi) is the importance
function used to draw samples from the environment map.

5. BIDIRECTIONAL IMPORTANCE SAMPLING

In some cases, one factor of the integrand is more expensive to
compute than the other. For this end, Burke et al. [8] proposed
to draw samples from a target distribution given as the product
of the other factors using sampling importance resampling.
In general, the most costly factor to evaluate is the visibility
factor, thus the target distribution is given by

γ̃t(ω)

Z
=

LY,t(x, ω)ρY (x, ωo, ω)(ω · n)∫
Ω
LY,t(x, ω)ρY (x, ωo, ω)(ω · n)dω

, (3)

where LY,t(x, ω) and ρY (x, ωo, ω) are the luminance of the
color valued Lt(x, ω) and ρ(x, ωo, ω), respectively, γ̃t(ω) =
LY,t(x, ω)ρY (x, ωo, ω)(ω ·n) is the unnormalized target and
Z =

∫
Ω
LY,t(x, ω)ρY (x, ωo, ω)(ω · n)dω is a normalization

constant corresponding to the un-occluded reflected radiance.
By first sampling from a distribution q(ω) for example pro-
portional to the BRDF, these samples can then be weighted
and resampled to obtain a new set of samples approximating
the target distribution. This is done by the empirical approx-
imation γ̂t(ω) =

∑N
i=1

1
N δωit(ω). Using this approximated

target distribution, the reflected illumination can be estimated
using

L̂r(x, ωo, t) = Ẑ

N∑
i=1

L̃t(x, ω
i
t)ρ(x, ωo, ω

i
t)V (ωit)

L̃Y,t(x, ωit)ρY (x, ωo, ωit)
, (4)

where Ẑ = 1
N

∑N
i=1 L̃Y,t(x, ω

i)ρY (x, ωo, ω
i)(ωi · n).

6. SMC SAMPLING

Instead of approximating the target distribution for each t in-
dependently we can use SMC samplers to exploit the corre-
lation of the target distribution between frames. This is mo-
tivated by the fact that for real-time HDR video environment
maps, the incident illumination often varies relatively slowly,
i.e. Lt(x, ω) ≈ Lt−1(x, ω).

Sequential Monte Carlo [17] is a family of methods for se-
quentially sampling from a set of target distributions of grow-
ing dimension. For the sequence of target distributions we are
interested in here (3) the dimension is constant and therefore
standard SMC methods cannot be applied directly. However,

it is possible to reformulate the problem by introducing arti-
ficial target distributions defined on a space of increasing di-
mension. By this construction, the desired target distribution
can be found by marginalizing over the auxiliary dimensions,
see [18]. To approximate the target distribution (3) the result-
ing SMC sampler consists of two steps, a propagation step
and an adaption step.

6.1. Propagation step

Assume that there exists a set of N weighted samples de-
noted {ωit−1, w

i
t−1}Ni=1. At frame t − 1 this set approxi-

mates the target by the empirical approximation γ̂t(ω) =∑N
i=1W

i
t−1δωit−1

(ω) where W i
t−1 =

wit−1∑N
j=1 w

j
t−1

denote the

normalized weights. For the first frame, such an approxima-
tion can be sampled using any product sampling approach.
In this work, we use bidirectional importance sampling dis-
cussed in Section 5.

To approximate the target at t, the samples at t−1 are first
propagated forward using sequential importance sampling by
simply reweighing the existing samples. With an appropriate
choice of artificial target distributions, for details see [18], the
new unnormalized weights simplify to

wit = W i
t−1

γt(ω
i
t−1)

γt−1(ωit−1)
. (5)

To limit the degeneracy of the approximation over time, i.e.
only a few samples receiving significant weights, resampling
is performed when the effective sample size (ESS) defined
by
∑N
i=1(W i

t )
−2 is below a pre-specified threshold. In this

work, we use 2
3N as this threshold. The resampling step

draws new samples ωit with replacement from the weighted
sample set with a probability proportional to the weights. The
new sample set is then by construction equally weighted.

6.2. Adaption step

To improve the approximation of the target distribution at
frame t, the samples {ωit, wit}Ni=1 are further adapted using an
Markov Chain Monte Carlo (MCMC) kernel Kt(ω, ω

′) with
the desired target as the invariant distribution. The MCMC
kernel is constructed using the Metropolis Hastings (MH) al-
gorithm. Using MH, the MCMC kernel is described by the
acceptance probability

a(ω → ω′) = min

(
1,
γ̃t(ω

′j
t )

γ̃t(ω
j
t )

q(ω′jt → ωjt )

q(ωjt → ω′jt )

)
, (6)

where ωjt is the current sample, ω′jt is the proposed sample
using the proposal distribution q(·).

We follow [9] and design a proposal distribution using a
mixture of local moves with some probability ν and and in-
dependent moves with probability 1 − ν. This prevents the



samples from getting stuck in local narrow modes. The lo-
cal moves are represented by a uniform random perturbations
of the current samples by a few degrees. The independent
moves are represented by drawing new samples from the en-
vironment map or the BRDF.

6.3. Reflected illumination estimate

Given the weighted sample set obtained from the SMC sam-
pler, the reflected surface radiance (1) is estimated by

L̂r(x, ωo, t) = Zt

N∑
i=1

W i
t

L̃t(x, ω
i
t)ρ(x, ωo, ω

i
t)V (ωit)

L̃Y,t(x, ωit)ρY (x, ωo, ωit)
. (7)

One advantage of the SMC rendering algorithm is that the
normalization constant Zt can be incrementally estimated via
the relation

Zt ≈ Zt−1

N∑
i=1

wit. (8)

For details on the derivation of this expression see [9]. The
initial Z1 can be estimated from the samples obtained via
bidirectional importance sampling in the first frame.

The SMC algorithm presented here works well under the
assumption that γt(ω) ≈ γt−1(ω). As the resampling op-
eration does not affect the computation of the normalization
constant Zt, this estimate is likely to be poor when the target
distribution changes rapidly. This is typically the case for real
HDR video environment maps. To smoothen the transition,
a set of intermediate distributions can be used [9] to guide
the samples smoothly between the targets. As recommended
in [9] we use one MCMC move for each intermediate distri-
bution to adapt the samples gradually.

A big drawback of the original SMC rendering algorithm
from [9] is that as time progresses, the variance of the esti-
mated normalizing constant tends to increase. This can lead
to visually disturbing artifacts. To counteract this, we propose
a simple but effective approach where we monitor the change
in Zt

Zt−1
and when a large increase occurs we reinitialize the

samples and the normalizing constant estimate using bidirec-
tional importance sampling.

7. IMPLEMENTATION

To enable real-time raytracing with video environment maps
we have implemented the three rendering algorithms de-
scribed above in the CUDA based OptiX 3.0 framework of
NVIDIA [1], running on the GPU. We use a regular sampling
of the image plane to spawn a set of rays into the scene. Our
implementation currently only considers direct illumination,
however it is trivial to extend it to path tracing as well, by
spawning a new ray from the shading point. To handle sev-
eral samples per pixel we utilize two OptiX kernels. The first

Frame 502

Fig. 2: Real-time rendered helicopter model (25 fps using
SMC) composited into the backplate video sequence

(a) Env.Map. (b) MIS (c) BIS (d) SMC

Fig. 3: Equal rendering time comparison using a video light
probe with several moving direct light sources. The media is
best viewed in the pdf file. Top row: frame 5, Bottom row:
frame 90. a) Light probe used to illuminate frame b) Results
rendered using MIS with Nρ = 15, NL = 15 c) Results
rendered using BIS with M = 400 and N = 20, d) SMC
with N = 8 particles and 3 intermediate distributions.

kernel spawns R rays per pixel and updates the associated
sample buffer. The second kernel filters the reflected radiance
of the sampled ray locations using an reconstruction filter and
tonemaps the image for display. In the examples presented
here, we used a box filter for reconstruction and a gamma
mapping for tonemapping. To sample from the environment
map we use the inversion method with tabulated row and
column CDFs [19]. The environment maps at frame t and
t − 1 are accessed through two texture samplers, enabling
efficient lookups using the texture hardware on the GPU. To
draw samples from the environment map we precompute tab-
ulated column and row CDF on the CPU and upload this to a
read-only global GPU buffer before rendering the frame. For
the SMC rendering algorithm we for each queried shading
point we read, compute and store the sampled directions and
weights {ωit, wit}Ni=1 in a 3D floating point buffer residing in
global GPU memory indexed using the ray origin.



8. RESULTS AND COMPARISIONS

All the results presented in here were computed using a desk-
top PC with a NVIDIA GTX 770 graphics card. Using the de-
scribed OptiX implementation we can render virtual objects
in temporally varying illumination environments in real time.
In figure 2, one frame of a video sequence with a rendered
helicopter model composited into a high resolution blackplate
video sequence is shown. The helicopter model was rendered
with a video light probe, enabling moving reflections, in 26
fps using the SMC rendering algorithm.

Comparing the three different rendering algorithms, we
found that somewhat surprisingly the MIS and BIS algorithms
perform better for a fixed computational cost. This is in con-
trast to previous work using CPU renderers which showed
a increased efficiency of the SMC rendering algorithm com-
pared to BIS [9]. A reason for the decreased performance
on GPUs is likely due to the global memory access needed
to read the result from the previous frame. We have also
found that the SMC algorithm is highly sensitive to the pa-
rameters, such as the number of intermediate distributions and
the mixture of MH proposals. This limits the applicability of
theses methods. Furthermore, MIS and BIS have a strong
advantage in practice in that they can handle freely moving
geometry and cameras with little extra implementation effort
while SMC requires back projecting shading point to the im-
age plane in the next frame [9].

The choice between MIS and BIS is dependent on the
type of materials and geometry present in the scene. For BIS
we found that first sampling from the BRDF leads to a much
more efficient sampling algorithm as sampling from the envi-
ronment is more costly than sampling from the Blinn-Phong
material we used in the renderings. This choice implies that
BIS is more efficient in rendering glossy surfaces, see for
example the comparison in figure 3, similar results hold for
other glossy objects in other scenes. However, MIS using
half the samples to sample the BRDF and half the samples to
sample form the environment map is more robust to different
illumination environments and material types than our BIS
implementation. In future work we would like to consider
approaches inspired by the SMC samplers for improving the
MIS and BIS estimators, for example using ratio estimators
of the normalizing constants, however without storing all the
explicit samples between frames. We would also like to in-
vestigate the use of control variated to limit the amount of
computation necessary for each new frame.
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