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ABSTRACT

Head-mounted Video-Oculography (VOG) eye tracking is vi-
sually intrusive due to a camera in the peripheral view. Elec-
trooculography (EOG) eye tracking is socially intrusive be-
cause of face-mounted electrodes. In this work we explore
Electroencephalography (EEG) eye tracking from less intru-
sive wireless cap scalp-based electrodes. Classification algo-
rithms to detect eye movement and the focus of foveal at-
tention are proposed and evaluated on data from a matched
dataset of VOG and 16-channel EEG. The algorithms utilise
EOG artefacts and the brain’s steady state visually evoked
potential (SSVEP) response while viewing flickering stim-
ulus. We demonstrate improved performance by extracting
features from source signals estimated by Independent Com-
ponent Analysis (ICA) rather than the traditional band-pass
preprocessed EEG channels. The work envisages eye track-
ing technologies that utilise non-facially intrusive EEG brain
sensing via wireless dry contact scalp based electrodes.

Index Terms— ICA, SSVEP, VOG, eye tracking, visual
attention

1. INTRODUCTION

The prevalent method for eye tracking is a camera pointed at
the eye - Video-Oculuography (VOG). Eye image capture is
inherently noisy due to the sensor technology and the unstable
physical space between the camera and eye from occlusion,
movement and varying light conditions; state-of-the-art head
mounted cameras have 0.5◦ visual error and remote systems
2◦ visual error [1].

Brain signal processing via Electroencephalography
(EEG) provides two additional eye movement information
sources- Oculomuscular movements via Electrooculography
(EOG), and the brain’s response to flickering stimuli - the
Steady-State Visual Evoked Potential (SSVEP) [2]. In this
work, these two information sources are combined to develop
an EEG-based eye tracking solution.

Section 2 reviews eye tracking methods and EEG. Sec-
tion 3 describes the proposed EEG signal processing method.
Section 4 reports the evaluation including details of the
EEG/VOG dataset collected specifically for this study. Sec-
tion 5 discusses future work.

2. BACKGROUND

2.1. Eye Movement and Tracking

The eye tracking problem can be defined as estimating a per-
son’s focus of foveal attention [3, 4, 5] and eye movement
types such as saccades (large and rapid movements), smooth
pursuits (slow movements), fixation (little movement) and
blinking.

Eye tracking techniques can be classed as either Video-
oculography (VOG) or non-optical. Electrooculography
(EOG) [6] is a non-optical method for eye movement sensing
based on changes measured in the steady corneoretinal po-
tential difference. The potential changes are measured with a
set of electrodes mounted around the eyes. If the eye moves
from its central position, the positive pole of the eye (cornea)
moves to one of the electrodes while the negative pole (retina)
approaches the opposite electrode. The dipole orientation
change effects the EOG signal amplitude. Although EOG
can estimate 2◦ visual angle [5], it can be cumbersome and
uncomfortable, normally limited to laboratory experiments
and they be employed in daily life and mobile circumstances.

VOG records an eye image sequence with high resolu-
tion cameras. They rely on the software processing system
for obtaining the eye position [5, 7]. Cameras are either head
mounted or remote. VOG is more comfortable and less intru-
sive than EOG. However, remote eye trackers limit the visual
field and mobility. Head-mounted trackers require users to
wear devices which potentially limit physical activity.

2.2. Electroencephalography

The variation of the surface potential distribution over the
scalp reflects the brain’s functional activities which are
recorded by placing a set of electrodes (sensors) on the scalp
and measuring the voltage differences between electrode
pairs. The resulting data is called the Electroencephalogra-
phy (EEG) [8, 9].

EEG signals are contaminated by artefacts rendering them
less usable. There are two categories of artefact- environ-
mental and biological [10]. Environmental artefacts originate
from outside of the body such as 50Hz or 60Hz power line
noise. Biological artefacts are electrical activities originate
from non-cerebral origins such as muscle artefacts (facial and
corporeal) and EOG.



In Neuroscience and Brain-Computer Interface (BCI)
studies, the EOG signal is an unwanted source which is
normally removed to reveal ‘clean’ EEG containing neural
activity only. Averaging, filtering and linear regression meth-
ods are commonly used to reject EOG but they typically
either under compensate leaving residual artefacts, or over
compensate removing neural information from the signal.

Improvement in EEG artefact rejection is demonstrated
with the Blind Source Separation (BSS) method Indepen-
dent Component Analysis (ICA) [11] which assumes that the
observed EEG signals from electrode channels are a linear
mixture of independent source signals (components). The
EEG signal channels are decomposed into multiple compo-
nents with a time-invariant invertible mixing matrix which
is estimated by criterion to identify different sources from
signal characteristics such as entropy or mutual information.

2.3. Steady-State Visual Evoked Potential

The Steady-State Visual Evoked Potential (SSVEP) is an
electrical response in the brain when the retina is stimu-
lated by a flickering visual stimulus at a frequency higher
than 6Hz [12]. SSVEP responses are an oscillation in the
EEG signals at the same frequency as the visual stimula-
tion. SSVEP can be detected reliably with minimal between-
person variation by analysing the EEG signal’s spectral con-
tent. SSVEP has become a popular technique for BCI [13, 14]
and enables a person’s focus of attention (FoA) to be es-
timated, providing the focus/stimulus is flickering. Thus,
augmenting the presentation of a focus with a flickering lumi-
nosity enables detection of the focus of foveal visual attention
without the use of VOG.

2.4. Novelty

Most studies in EEG are motivated by neuroscience and BCI
rather than eye tracking; eye movement is seen as an un-
wanted EOG artefact. They normally use laboratory-grade
EEG devices with a high number of channels (e.g. 64), each
channel sensed by a wet-contact electrode. Scalp-based elec-
trodes are normally complemented by others on the face and
chest to assist with artefact rejection. Consequently, such sys-
tems are costly and not suited for real-world wearable appli-
cations. This study captures data specifically for eye tracking
with a wearable consumer device with a lower number (16)
of wireless dry contact scalp-only electrodes.

3. EEG EYE TRACKING SIGNAL PROCESSING

There are two types of eye tracking information that can be
extracted from EEG channels - eye movement type from EOG
(e.g. saccades, fixations and pursuit) and eye position in re-
lation to the visual field from the SSVEP response detection

and apriori knowledge of the positions of stimuli in the visual
field. The following signal processing stages are proposed:

Pre-processing: EEG channels are band-pass filtered (1
–40Hz) to remove the slow drifts and high-frequency noise
(e.g. mains hum)

Feature Extraction: Features are extracted from the pre-
processed EEG channels. For eye movement type classifica-
tion (EOG-based) each channel is epoched into 400ms tem-
poral windows with 50% overlap and two features extracted
per channel - the minimum and maximum amplitude. For
SSVEP response estimation, each channel is epoched into
2000ms windows with 60% overlap and 2 features per stimu-
lus are extracted per channel - the spectral power at the stimuli
frequency (typically either 7Hz, 10Hz or 12Hz) and its sec-
ond harmonic. The Power Spectral Density is estimated with
Welch’s method [15]. The extracted features from all chan-
nels are concatenated at the end.

Independent Component Analysis: Source component
signals are extracted from channels with the Blind Source
Separation (BSS) algorithm Extended-Infomax [16] Indepen-
dent Component Analysis (ICA). The same features are ex-
tracted from the component signals as from the pre-processed
EEG channels.

Classification: Classifiers (reported in this paper k-
Nearest Neighbour (kNN) with Euclidean distance metric)
are trained for eye movement type (4 classes - blink, fixa-
tion, saccade and pursuit) and to detect SSVEP (4 classes -
0Hz, 7Hz, 10Hz and 12Hz). The value k is set to 1 (i.e.
1-NN ). Separate classifiers for features extracted from EEG
channels and ICA components are trained and compared in
the evaluation.

4. EVALUATION

To evaluate the EEG-based Eye Tracker, 5 users’ EEG and
VOG is recorded under controlled cued tasks tracking stimuli
which requires fixation, saccadic and pursuit eye movements.

Participants: The 5 healthy users have normal or corrected-
to-normal vision and no neurological disorders. They sit in a
comfortable chair 1m from a 19′′ computer monitor. They are
instructed to relax and retain as placid as possible, to avoid
the EEG channel contamination with electrical interference
from muscles.

Apparatus: Both EEG and VOG apparatus are non-
intrusive and designed for mobile (wireless) situations outside
of laboratory settings. EEG signals are recorded from the 16
electrode wireless Emotiv EPOC EEG headset which has a
128Hz sample rate. This device has credible albeit lower per-
formance than the higher-channel laboratory-based devices
[17] although performance degrades over time [18]. VOG is
captured from Tobii Eye Glasses, a head-mounted monocular
eye tracker which samples at 30Hz and records visual angles
up to 56◦ horizontally and 40◦ vertically. EEG and VOG data
are synchronised by inserting timestamps in the VOG data.



Fig. 1. Display to user over time (left to right). Row (a) Pos-
sible stimuli locations; (b) Elicit short saccade; (c) Elicit fix-
ation in the display centre; (d) Elicit a long saccade; (e) Elicit
fixation at the display edge; (f) Possible stimuli locations (g)
Static SSVEP stimulation for fixations where stimulus is fixed
at the screen centre; (h) SSVEP stimulation for pursuit where
stimulus moves from the screen centre to the sides.

The 30Hz VOG data is up-sampled to match the 128Hz EEG
data by linear interpolation; this approximates the saccades’
trajectory in VOG.

4.1. Sessions recorded

Fixation, Saccade and Pursuit direction detection from EOG:
Fixations and horizontal, vertical and diagonal saccades are
elicited by visual cue. The EEG collected is used to detect and
classify pursuit and saccade direction from the EOG features
as outlined in section 3. Refer to Fig. 1, users are presented
with a black square display and there are 9 possible stimulus
locations around the screen edge. Sessions start with a white
fixation cross appearing. To elicit short saccades, the cross
appears in the centre. To elicit long saccades, the cross ap-
pears at the edge. After a random time between 500ms and
900ms, the stimulus is presented at one of the nine edge lo-
cations. The cross disappears at a random interval 500ms to
900ms after stimulus presentation which provides the cue for
users to make a saccade to the stimulus location. Stimuli are
presented for a further 1s after the cue. Each user performs
112 cued fixations and 112 cued saccades which lasts approx-
imately 11 minutes.

Focus of foveal Attention (FoA) during fixations and pur-
suit movements: Fixations and smooth pursuits are elicited by
flickering stimuli. The EEG collected is used to detect and
classify FoA fixations and pursuits direction from features
outlined in section 3. Similar to the previous session, refer
to Fig. 1, the screen is a black square. Again, sessions start
with a white fixation cross appearing. After 5s the stimulus - a
10x10 checkerboard - appears flickering at one of three differ-

ent frequencies suitable for SSVEP detection (7Hz, 10Hz or
12Hz [19]) for another 14s. To elicit fixations the checker-
board remains still. To elicit pursuit it moves in one of 8 direc-
tions towards the screen edge. Each user performs 8 fixations
and 8 pursuit movements for each flickering frequency (total
48 movements over approximately 11 minutes.

4.2. Classifiers

Eight kNN Classifier pairs (labelled C1 − 8 in the result
Table 1) are trained on the EEG session data following the
process outline in section 3. Each pair consists one classifier
trained on EEG pre-processed channels and one classifier
trained on source components estimated by ICA. C1 and C2
classify long and short saccade directions respectively from
EOG features (8 class problem). C3 and C4 classify FoA
fixations and pursuit movement respectively from SSVEP
features (2 class problem). C5 and C6 repeat this but for
SSVEP detection for a specific flickering frequency (4 class
problem assuming 3 potential FoA flickering at different fre-
quencies). C7 and C8 classifiers classify pursuit direction
with and without SSVEP present (2 class problem).

The saccade and pursuit direction detection performance
is assessed by the Root Mean Square Error (RMSE) of the
difference between the detected angle and the real angle asso-
ciated with the stimuli’s position:

RMSE =

√√√√ 1

N

N∑
t=1

(θt − θ̂t)2 (1)

,where N is the time length, and θt, θ̂t are the real and esti-
mated angular stimuli position at time t, respectively.

4.3. Results

Table 1 summarises the classification performance results ob-
tained through different classifiers (C1-C2). The classifiers’
accuracy and RMSE before and after applying ICA are re-
ported. As its evident from the results, the all classifiers’
accuracy is improved and the between-person variation de-
creased significantly if features are extracted from ICA com-
ponents (Fig. 2).

For C1, short saccade direction classification accuracy is
almost 74% with a 14% improvement if features are extracted
from ICA components. C2 benefits about 2% more from ap-
plying ICA than C1, result in 89% accuracy for long saccade
direction classification. Considering RMSE, similar trend is
obtained when comparing C1 and C2 (Fig. 2).

For C3 and C4, FoA estimation (i.e. SSVEP detection
during fixations and pursuits respectively) accuracy again is
shown to be improved (e.g. C3 by 6% to 97.90%) with ICA
component features. Similarity between results suggests that
the SSVEP response during pursuit movements is no harder



Table 1. Eye Movement Classification Results.

Classifer Description
RMSE (◦) Accuracy (%)

Before ICA After ICA Before ICA After ICA

C1 Short saccade in one of 8 directions 19.02 9.02 73.84 87.58

C2 Long saccade in one of 8 directions 19.30 7.81 73.45 89.25

C3 Fixation from SSVEP detection (all frequencies) (2 class) N/A N/A 91.38 97.90

C4 Pursuit from SSVEP detection (all frequencies)(2 class) N/A N/A 92.27 97.79

C5 Fixation-FoA from SSVEP detection (7Hz, 10Hz ,12Hz)(4 class) N/A N/A 83.87 96.38

C6 Pursuit-FoA from SSVEP detection (7Hz, 10Hz ,12Hz) (4 class) N/A N/A 86.59 96.05

C7 Pursuit direction (no SSVEP) (8 class) 11.51 1.79 81.64 97.34

C8 Pursuit direction (SSVEP present) (8 class) 12.44 1.63 82.88 97.57

Fig. 2. , (a) RMSE for saccadic eye movement direction detection; C1: Short saccade; C2: Long saccades, grey bars represent
RMSE when features are extracted from original EEG channels, black bars represents RMSE when features are extracted from
ICA estimated sources; (b) SSVEP frequency classification accuracy;(c) Pursuit direction detection; C7: without SSVEP, C8:
with SSVEP. The error bars represent standard errors.

to detect than fixations despite the potential for more EEG
signal contamination due to EOG.

For C5 and C6, FoA estimation for SSVEP given 3 po-
tential stimuli flickering has 96% accuracy for pursuit move-
ments and fixations with features extracted from ICA compo-
nents.

Finally, results fromC7 andC8 demonstrate that the pres-
ence of SSVEP in the visual field does not hinder the classi-
fication of pursuit direction with both classifiers show similar
results.

Overall, eye movement direction classification accuracy
is best in C8 (i.e. 97.57%) with the least RMSE (i.e. 1.63◦)
where there is pursuit eye movement rather than saccadic eye
movement.

5. DISCUSSION

A signal processing scheme for extracting eye tracking data
from wireless portable scalp-based EEG has been proposed

and evaluated. Feature extraction from EEG source compo-
nents estimated by ICA results in better performance com-
pared to feature extraction from pre-processed EEG channels;
notably between-person variation reduces. This work is the
first we are aware that uses source components for SSVEP
classification rather than EEG channels. Future work will
refine the eye movement type classification in the presence
of other EEG artefacts such as body movement. The VOG
data captured in this study affords the opportunity for hybrid
VOG/EEG multimodal eye tracking. The modulation of real-
scenes with flickering stimuli via augmented reality technolo-
gies to estimate focus of foveal visual attention will poten-
tially lead to VOG-free eye tracking, without the social and
physical intrusion of face mounted electrodes.
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