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ABSTRACT

This paper presents a novel approach to signal modeling for
EEG signal rhythms. A new method of 3-stage DCT based
multirate filterbank is proposed for the decomposition of
EEG signals into brain rhythms: delta, theta, alpha, beta, and
gamma rhythms. It is shown that theta, alpha, and gamma
rhythms can be modeled as 1st order fractional Gaussian
Noise (fGn), while the beta rhythms can be modeled as 2nd
order fGn processes. These fGn processes are stationary ran-
dom processes. Further, it is shown that the delta subband
imbibes all the nonstationarity of EEG signals and can be
modeled as a 1st order fractional Brownian motion (fBm)
process. The modeling of subbands is characterized by Hurst
exponent, estimated using maximum likelihood (ML) estima-
tion method. The modeling approach has been tested on two
public databases.

Index Terms— Fractional Gaussian noise, EEG, DCT

1. INTRODUCTION

Epilepsy is one of the world’s most common neurological
diseases, affecting more than 40-50 million people world-
wide [1]. Electroencephalograph (EEG), a record of the elec-
trical activity generated by a large number of cortical neurons
in the brain, is the main diagnostic tool for the determina-
tion and treatment of epilepsy [2]. An EEG signal is band-
limited in frequency to 60 Hz. It is studied via five frequency
bands: delta 0.1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-
30 Hz, and gamma 30-60 Hz band [3]. These subband signals
are also called as brain rhythms that capture different brain
activities [3]. EEG signal analysis is helpful in predicting
epileptic seizures [2], classifying sleep stages [4], detection
and monitoring of brain injury [5], and detecting abnormal
brain states [6].

Visual analysis of EEG signals in the time domain is an
empirical science and requires a considerable amount of neu-
rological knowledge [7]. In particular, the process of epilepsy
detection by visual inspection is subjective [8] that may lead
to incorrect diagnosis. This limitation calls for a need of fully
or semi-automated analysis of these signals.

Fourier transform (FT) has been used extensively to an-
alyze EEG signals assuming it to be a stationary random

process, but EEG is a non-stationary random process [9]. For
example, [10] uses the autoregressive model for EEG sig-
nals, [11] uses the Welch method to estimate the periodogram
for the analysis of EEG signals. However, it is known that
EEG signals are random processes [9] [12] that are non-
stationary [9]. Although in [13–16] they have been modeled
using fractal dimension assuming them to be self-similar in
nature, there is no attempt to model them as discrete-time
fractional Brownian motion (dfBm) or discrete-time frac-
tional Gaussian noise (dfGn) random processes. Motivated
with the above discussion, we attempt to model these pro-
cesses as dfBm processes.

The contributions of this paper are as follows:
1. We present a new method of discrete cosine transform

(DCT) based multirate filterbank on EEG signals to ex-
tract delta, theta, alpha, beta, and gamma brain rhythms;

2. We present a new random process modeling approach,
where we have shown that delta rhythms imbibe the non-
stationary property of EEG signals and can be modeled as
1st order fBm processes;

3. Further, it has been shown that theta, alpha, gamma, and
beta rhythms are stationary random processes and can be
modeled as higher order fGn.
This modeling may prove to be helpful in the detection

and classification problems in EEG signal processing. This
paper is organised into five sections. Section 2 presents the
theory of fBm and fGn processes in brief. Section 3 describes
the data sets used. In section 4, we present method and results
on subband modeling of EEG signals. In the end, conclusions
are presented in section 5.

2. BRIEF REVIEW OF FBM AND FGN POCESSES

2.1. Fractional Brownian motion

A continuous-time random process is called self-similar if its
statistical properties are scale invariant. Symbolically, it is
represented as [17]

x(ct)
d
= cHx(t), (1)

where the random process x(t) is self similar with index H
(Hurst exponent) for any scale parameter c>0. This is to



note that equality in (1) holds in statistical sense for all fi-
nite order distributions [18]. An important class of these non-
stationary self-similar processes is those with self-similarity
index H and having stationary increments (H-sssi). An H-
sssi Gaussian process with 0 < H< 1 is known as fractional
Brownian motion [17]. Although an fBm process is a non-
stationary process, the averaged power spectral density (PSD)
of these processes follows a power law and is directly propor-
tional to 1/|f |β with β = 2H + 1 where f is frequency in
Hertz [19]. Corresponding to the discrete data set, discrete-
time fractional Brownian motion [20] is defined as

BH(n) = BH(nTs), (2)

where n is an integer and Ts is the sampling period. Because
the process is self-similar for any value of c > 0, Ts can
be taken to be equal to one without any loss of generality.
A dfBm process is a zero mean, self similar, non-stationary
random process with the auto-covariance sequence given as
below [20]:

RHB (n1, n2) =
σ2
H

2
(|n1|2H − |n1 − n2|2H + |n2|2H), (3)

where σ2
H = var(BH(1)) =

1

Γ(2H + 1)|sin(πH)|
.

2.2. Fractional Gaussian Noise

It is observed that the normalized incremental process of an
fBm is a self-similar stationary process and is termed as frac-
tional Gaussian noise (fGn) [20]. For H = 1/2, fractional
Brownian motion is a well known Wiener process and the re-
sulting fGn is a zero-mean stationary white Gaussian noise.
Thus, corresponding to dfBm process, a 1st order discrete
time fGn (1-dfGn) process is defined as the 1st order differ-
ence of dfBm as below [20]:

X1(k)
4
= BH(k + 1)−BH(k). (4)

On using (3) and (4), the covariance of 1-dfGn process is:

RX1
(k) =

σ2
H

2
(|k + 1|2H − 2|k|2H + |k − 1|2H). (5)

It is evident from (6) that 1-dfGn process is a wide-sense sta-
tionary random process. It can be shown that the power spec-
tral density of 1-dfGn falls as 1/|f |2H−1 where 0<H<1 [20].
Or, we can say that the spectrum of 1-dfGn is proportional
to 1/|f |2H+1 where -1<H<0. Likewise, a 2nd order dfGn
(2-dfGn) is defined as the 2nd order difference of dfBm as
below [20]:

X2(k)
4
= BH(k + 2)− 2BH(k + 1) +BH(k). (6)

Correspondingly, the covariance of 2-dfGn process is:

RX2
(k) =

σ2
H

2
(−|k + 2|2H + 4|k + 1|2H

− 6|k|2H + 4|k − 1|2H − |k − 2|2H). (7)

The spectrum of 2-fGn is directly proportional to 1/|f |2H−2
where 0<H<1 or can be said to be directly proportional to
1/|f |2H+1 where -2<H<-1. In general, an nth order dfGn
can be defined as

Xn(k)
4
=

n∑
j=0

(−1)n−j
(
n
j

)
BH(k + j) (8)

with the covariance given by

RXn
(k) =

σ2
H

2
(−1)n

n∑
j=−n

(−1)j
(

2n
n+ j

)
|k + j|2H .

(9)
In order to distinguish dfBm, 1-dfGn, and 2-dfGn based on
the value of Hurst exponent H, we consider 0<H<1 for
dfBm, -1<H<0 for 1-dfGn, and -2<H<-1 for 2-dfGn, i.e.,
we assume that the spectrum of all these random processes is
proportional to 1/|f |2H+1, irrespective of whether they are
dfBm or dfGn processes of any order. Using this convention,
we note that a dfBm process with 0<H<1 on first difference
(equation (5)) leads to a 1-dfGn with

H1−dfGn = H1−dfBm − 1, (10)

and a dfBm process on second difference (in equation (7))leads
to a 2-dfGn with

H2−dfGn = H1−dfBm − 2. (11)

2.3. Hurst Exponent Estimation of Higher Order fGn
and fBm Processes

In this paper, the Hurst exponent H is estimated using the
maximum likelihood (ML) method. The ML estimation
method is applicable on stationary random processes. A 1st

order dfBm process is non-stationary. However, the 1st order
incremental process, 1-dfGn, of a dfBm process is a station-
ary process. Using this fact, ML estimation is employed
in [21] for the estimation of H of a dfBm process. We extend
this method to estimate H for higher order (nth order with
n ≥ 1) dfGn processes.

3. DESCRIPTION OF DATASETS

3.1. Description of dataset-1

The data set consists of five Sets (SET A-E) of EEG signals
containing 100 EEG segments each [22]. SETA and B con-
sist of data collected from five healthy volunteers using scalp
electrodes. SET C and D segments have been measured in
seizure-free intervals from five patients in the epileptogenic
zone (D) and from the hippocampal formation of the opposite
hemisphere of the brain (C). SET E consists of data recorded
during a seizure. Sets C, D, E data have been acquired in-
tracranially. Each of these sets has 100 single-channel record-
ings with the sampling rate of signals as 173.6 Hz resulting in



86.8 Hz bandwidth. The duration of each segment is 23.6 s
that leads to 4097 samples in each segment.

3.2. Description of dataset-2

In order to test the robustness of our classifier, we tested our
method as outlined in Sections 5 and 6 on one more dataset
taken from another source. This data is extracted from the
MIT online database [23] corresponding to 16 different sub-
jects. This online database has long recordings of epilep-
tic patients that contain inter-ictal and ictal periods. Data is
stored into two sets of 100 segments each labelled as SET Y
and Z. SET Y consists of segments during interictal (in be-
tween seizure) periods and SET Z consists of data of same
patients during seizure. Data is sampled at 256 Hz. We con-
sidered 10 second segments consisting of 2560 samples each.
In addition, we considered data of only one channel, i.e., CZ-
PZ electrode because the signal recorded from this region of
the brain has comparatively less artefact [24].

3.3. Band-limiting and artifact removal

EEG signals are limited to 60 Hz. Thus, we use a lowpass
butterworth filter with cut-off frequency of 60Hz of order 6 in
order to band limit EEG segments of both the datasets. The
first dataset is provided for researchers after removing arti-
facts. On dataset-2 (SET Y and Z), we performed operations
to remove artifacts due to eye blinks and eye movements, and
sweat artifacts.

4. MODELING OF EEG SIGNALS AND THE
CONSTITUENT BRAIN RHYTHMS

EEG signals are considered to be made up of two compo-
nents: 1) the ongoing brain activity and 2) the stimulus re-
lated response. The ongoing brain activity has a mean of
zero [25]. Thus, in the absence of stimulus, these signals
will form zero-mean random processes. An EEG signal is
a record of the overall activity of millions of neurons in the
brain. Thus, using the central limit theorem, it will be appro-
priate to assume these to be Gaussian random processes. Our
two datasets have recordings in the absence of any stimulus.
Thus, using the above argument, we attempt to model these
processes as dfBm processes. First, we estimate the H value
of all the 100 segments of SET C, E, Y, and Z using the ML
method presented in [21] (Refer to Table-I). It is seen from

Table 1. Average Hurst exponent H of data
Dataset SET Hurst Exponent H
1 C 0.8883
1 E 0.9610
2 Y 0.8981
2 Z 0.8816

Table 1 that the value of H lies in the range 0<H<1 that cor-
responds to a dfBm process. In [13], a dfBm process is passed
through a multirate filterbank withfilters that are eigenvectors
of its covariance matrix. Further, it has been shown that the
subband outputs of such a filterbank are statistically uncor-
related with respect to each other at all time instants [26].
In [27], it is shown that DCT basis vectors form the eigen-
vectors of these covariance matrices in the asymptotic sense.
Because we would like brain rhythms extracted from differ-
ent subbands to be uncorrelated with respect to each other,
first we propose to use a DCT based multirate filterbank on
input EEG signals to extract brain rhythms.

4.1. DCT based subband decomposition of EEG signals

As mentioned earlier, there are five major brain waves:
delta 0.1-4Hz, theta 4-8Hz, alpha 8-12Hz, beta 12-30Hz
and gamma 30-60Hz.We use a DCT based 3-stage multirate
filterbank to extract these brain rhythms. Figure 1 shows the
block diagram of this system.

The first stage input signal is passed through a 2-channel
DCT analysis filterbank. The highpass filter branch provides
us gamma band. The lowpass output of first stage is passed
through a 5-channel DCT analysis filterbank. The higher
three frequency bands are combined using the corresponding
synthesis branches to obtain beta band. The last stage is a
3-channel DCT analysis filterbank that provides us the last
three subbands.

The filters used at each stage are the DCT basis vectors
given as below:

hj,1(n) =
1√
M

; j = 1, 2, 3; 0 ≤ n ≤M − 1

hj,k(n) =

√
2

M
cos

π(2n+ 1)(k − 1)

2M
;

j = 1, 2, 3; 2 ≤ k ≤M ; 0 ≤ n ≤M − 1 (12)

where j is the stage number (1, 2, or 3), M is the downsam-
pling factor (or the length of filters in each stage), and k de-
notes the analysis (or synthesis) filter number at each stage
with k = 1 as the lowpass filter, k = M denotes the highpass
filter, and 2 < k < M − 1 denote the bandpass filters.

4.2. Modeling of subband signals

After extracting brain rhythms, we would like to model them
based on their statistical properties. In [26], it has been shown
that a dfBm process when passed through a multirate filter-
bank with eigenvectors of its covariance matrix as filters leads
to stationary processes in all the subbands except for the low-
pass branch. This implies that except for the delta band, other
brain rhythms should comprise zero-mean, Gaussian, station-
ary random processes, i.e., the fGn processes. Table 2 shows
the mean Hurst exponent value for each subband. It is clearly
seen that the estimated H value is positive for the delta band,
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Fig. 1. DCT based 3-stage multirate filterbank for the extraction of brain rhythms

while it is negative for the other subbands. Further, we note
that beta band can be modeled as 2-dfGn random process.
These observations match with the theoretical results of [26].
This provides validation to our modeling in this paper.

5. CONCLUSIONS

This paper proposes novel methods for the decomposition of
EEG signals into brain rhythms and the subsequent stochas-
tic modeling of these rhythms. Brain rhythms are extracted
using 3-stage DCT based multirate filterbank. It has been
shown that theta, alpha, and gamma rhythms can be mod-
eled as 1st order fGn processes, beta rhythms as 2nd order
fGn processes, and the delta rhythm as the fBm random pro-
cess. The modeling of these processes (hence, brain rhythms)
is characterized by the Hurst exponent H which is estimated
by maximum likelihood (ML) estimation method.
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