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ABSTRACT

The subspace-based line detection (SLIDE) algorithm en-
ables the estimation of parameters of multiple lines within
a digital image by mapping these lines to frequency modu-
lated (FM) signals. In this paper, we consider the estimation
of such obtained FM signals by using estimators developed
for polynomial-phase signals (PPSs). For this purpose, a
recently proposed method that combines the cubic phase
function (CPF) and high-order ambiguity function (HAF),
referred to as the product CPF-HAF (PCPF-HAF), has been
used. Simulations show that the PCPF-HAF-based estimator
is more accurate than the estimators based on time-frequency
representations.

Index Terms— SLIDE, line estimation, polynomial-
phase signal, PHAF, PCPF-HAF

1. INTRODUCTION

The subspace-based line detection (SLIDE) algorithm has
found numerous applications in image and video process-
ing, including the estimation of motion parameters in video-
sequences [1–7]. A key step in the SLIDE algorithm is
mapping of lines within an image to frequency modulated
(FM) signals. This step is performed by using the constant
µ-propagation or the variable µ-propagation.

If an image contains straight lines only, the SLIDE pro-
duces a sum of sinusoids. Features of these sinusoids can be
extracted using some classical spectral estimation tools, such
as the periodogram [8] or ESPRIT [9]. However, when lines
are not straight, the obtained signal is an FM one, which ren-
ders the classical estimation tools non-suitable for the line es-
timation. The time-frequency (TF) representations have been
proposed to deal with FM signals generated by non-straight
lines in SLIDE [4]. These FM signals can be approximated
by polynomial-phase signals (PPSs). In this paper, we con-
sider the phase/frequency estimation of such obtained PPSs
using the combination of the cubic phase function (CPF) and
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high-order ambiguity function (HAF), referred to as the prod-
uct CPF-HAF (PCPF-HAF) [10]. In terms of the estimation
accuracy, the PCPF-HAF outperforms methods based on the
TF representations, as shown in simulations.

The paper is organized as follows. In Section 2, transfor-
mation of image containing line patterns to the sum of FM
signals with polynomial modulation is demonstrated. In Sec-
tion 3, we overview the existing PPS estimators such as the
product high-order ambiguity function (PHAF) and the CPF
[11], as well as the state-of-the-art approach PCPF-HAF [10].
Simulations are given in Section 4. Concluding remarks are
given in Section 5.

2. SLIDE ALGORITHM

Consider a 2D image with zero-valued background and
a line that can be described with parametric coordinates
(x(t), y(t)):

f(x, y) = δ(x− x(t), y − y(t)), (1)

where δ(x, y) represents the 2D Dirac delta function. In the
SLIDE algorithm [1, 2], the image f(x, y) is transformed to
two 1D signals:

f1(x) =

∫ ∞

−∞
f(x, y)ejµ1(x,y)dy,

f2(y) =

∫ ∞

−∞
f(x, y)ejµ2(x,y)dx,

(2)

which are in turn used for the line parameter estimation.
Since the propagation functions µ1(x, y) and µ2(x, y) are
real-valued, f1(x) and f2(y) are FM signals, which can be
analyzed by numerous spectral analysis techniques.

2.1. Constant µ-propagation

Consider the straight line case

f(x, y) = δ(y − ax− b), (3)

where the line parameters (a, b) are to be estimated. By using
the constant µ-propagation, i.e.

µ1(x, y) = µy (µ = const), (4)



the function f1(x) becomes a complex sinusoid

f1(x) =

∫ ∞

−∞
δ(y − ax− b)ejµydy = ejµ(ax+b), (5)

whose initial phase and frequency depend on b and a, respec-
tively. Numerous methods for the estimation of complex si-
nusoid exist in the literature (see [12] and references therein).
Note also that the parameter b cannot be estimated using this
form of propagation due to ambiguity in signal phase.

2.2. Variable µ-propagation

The variable µ-propagation [1] is obtained with

µ1(x, y) = µy2, (6)

which yields a linear FM signal (chirp)

f1(x) = exp(jµ(ax+ b)2), (7)

whose parameters can be estimated by several approaches
[13, 14].

Consider now an image containing a polynomial line

f(x, y) = δ

(
y −

∑M

i=0
aix

i

)
. (8)

The variable µ-propagation transforms f(x, y) to

f1(x) = ejµ(
∑M

m=0 amxm)
2

= ejµ
∑M

m=0

∑M
n=0 amanx

m+n

whose instantaneous frequency (IF)

ω(x) = µ

M∑
m=0

M∑
n=0

(m+ n)amanx
m+n−1 (9)

is highly non-stationary for M > 1.
Commonly, the TF representations of high order PPSs are

characterized by significant inner interferences that cause bias
in the IF estimation [15]. In addition, extraction of line pa-
rameters from the IF requires solving a set of non-linear equa-
tions. Therefore, in order to improve the estimation of poly-
nomial lines, an alternative approach has been proposed in [4]
having the following propagating function:

µ1(x, y) = µxy, (10)

which for the polynomial line (8) gives

f1(x) = ejµ
∑M

m=0 amxm+1

(11)

with the IF

ω(x) = µ
M∑

m=0

am(m+ 1)xm. (12)

As opposed to the 2M − 1 polynomial order in (9), the IF
now has the order of M . Reduction of the polynomial order
in frequency/phase means that both TF-based and PPS-based
estimators will be more accurate. Coefficients of the IF ω(x)
are now directly proportional to that of polynomial line {ai,
i = 0, 1, ...,M}, whereas in (9) it is cumbersome to establish
a relation between the line parameters and signal phase.

3. ESTIMATION METHODS

The multi-lag high-order instantaneous moment (ml-HIM) of
a discrete signal x(n), n = 0, · · · , N − 1, is defined as [16]

x1(n) = x (n) ,

x2(n; τ 1) = x1(n)x
∗
1(n+ τ1),

x3(n; τ 2) = x2(n; τ 1)x
∗
2(n+ τ2; τ 1),

. . .

xP (n; τP−1) = xP−1(n; τP−2)x
∗
P−1(n+ τP−1; τP−2),

(13)

where τ i = [τ1, τ2, · · · , τi], i = 1, ..., P − 1, are the sets
of time lags. The multi-lag HAF (ml-HAF) is defined as the
discrete Fourier transform (DFT) of the ml-HIM [16],

XP (f ; τP−1) =
N−1∑
n=0

xP (n; τP−1) e
−j2πfn. (14)

If x(n) is a monocomponent P th order PPS, i.e.

x(n) = Aej2π
∑P

m=0 am(n∆)m ,

where am are the polynomial coefficients and ∆ is the sam-
pling interval, the P th order ml-HIM of x(n) is a complex
sinusoid with frequency f = ∆PP !aP

∏P−1
k=1 τk. By esti-

mating this frequency [12], we can also estimate aP . Lower
order coefficients are obtained by repeating the same proce-
dure on the signal x(n) dechirped by the previously estimated
higher order coefficients [14, Section III].

When x(n) is a mc-PPS, i.e.

x(n) =
K∑

k=1

Ake
j2π

∑P
m=0 ak,m(n∆)m ,

where ak,m are the coefficients of the kth component, the P th
order ml-HIM will contain K complex sinusoids correspond-
ing to the auto-terms. In addition to the auto-terms, the ml-
HIM will contain a large number of cross-terms which are, in
general, P th order PPSs [16].

3.1. PHAF

The cross-terms can be significantly attenuated using the
PHAF [16]. First, Q sets of time lags are introduced as
follows:

TQ
P−1 =

[
τ
(1)
P−1, τ

(2)
P−1, · · · , τ

(Q)
P−1

]
,



where τ
(q)
P−1 =

[
τ
(q)
1 , τ

(q)
2 , · · · , τ (q)P−1

]
and q = 1, ..., Q. The

PHAF is then defined as

XQ
P (f,TQ

P−1) =

Q∏
q=1

XP (β
(q)f, τ

(q)
P−1), (15)

where β(q) =
∏P−1

k=1 τ
(q)
k /τ

(1)
k represents the frequency

scaling coefficient. The PHAF exploits the fact that the fre-
quencies of auto-terms are proportional to the product of time
lags, which is not the case for the frequencies of cross-terms.
Therefore, after scaling in frequency by β(q), the auto-terms
will align in frequency, whereas the cross-terms will not.
Consequently, a product of several ml-HAFs (15) will result
in suppressing the cross-terms with respect to the auto-terms.

Coefficients of multiple PPSs can be efficiently estimated
using an iterative PHAF-based method proposed in [17]. With
calculation of only several additional PHAF points, the auto-
term frequency can be estimated very accurately, thus pre-
venting the need for oversampling the PHAF domain, which
represents the straightforward approach.

3.2. CPF, CPF-HAF and PCPF-HAF

Each auto-correlation in (13) increases the signal-to-noise
(SNR) threshold by approximately 6 dB [18] and produces
additional interference terms. Reducing the number of PDs,
therefore, will improve the accuracy of technique that uses
the auto-correlations (13) as the means of parameter estima-
tion. The transform that exploits this fact is the CPF proposed
in [11] for the estimation of cubic phase signals (P = 3).
The CPF is defined as

CPFx(n,Ω) =
∑
k

x(n+ k)x(n− k)e−jΩ(k∆)2 . (16)

Parameters a3 and a2 can be estimated from the CPF evalu-
ated at two instants, say n = 0 and n = n1, as

â2 = Ω̂0/(2a2), â3 = (Ω̂n1 − Ω̂0)/(6n1∆a3),

Ω̂0/n1
= argmax

Ω
|CPFx(0/n1,Ω)|2. (17)

Since for a cubic phase signal only one auto-correlation
is calculated, as opposed to two in the HAF, the CPF outper-
forms the HAF in terms of accuracy and SNR threshold.

In [10], a method for parameter estimation of PPSs of or-
der more than three is proposed. The method combines the
CPF and the HAF, and is referred to as the CPF-HAF. It pro-
vides more robust and more accurate results than the standard
HAF/PHAF-based approaches. The CPF-HAF starts from the
fact that the ml-HIM xP−2(n; τP−3) of a P th order PPS x(n)
is a third-order PPS with coefficients a2 and a3 proportional
to coefficients aP−1 and aP , respectively, of x(n). Therefore,
the CPF-HAF is defined as the CPF of xP−2(n; τP−3), i.e.

CPF-HAFx(n,Ω) =∑
k

xP−2(n+k; τP−3)xP−2(n−k; τP−3)e
−jΩ(k∆)2 . (18)

Fig. 1. (a) Image. (b) S-method of FM signals obtained by SLIDE.
(c) IF estimations by the S-method and the PCPF-HAF.

Following the same rationale as in the PHAF case, the
product version of the CPF-HAF is defined as

PCPF-HAFx(n,Ω) =

Q∏
q=1

CPF-HAFq
x(n, β

(q)Ω), (19)

where CPF-HAFq
x is the CPF-HAF calculated with the lag

set τ (q), Q is the number of different lag sets and β(q) =∏P−3
i=1 τ

(q)
i /τ

(1)
i is the scaling operator in the Ω domain.

4. SIMULATIONS

Example 1: Here, we will compare the performances of the
PCPF-HAF and the S-method [4] in estimating coefficients of
polynomial lines within an image. To that end, consider the



Table 1. Estimated polynomial-line parameters
S-method PCPF-HAF

a1,3 −1.941 · 10−6 −1.95 · 10−6

a1,2 3.275 · 10−3 3.302 · 10−3

a1,1 −0.659 −0.689
a1,0 143.16 128.93
a2,3 1.784 · 10−6 1.857 · 10−6

a2,2 −3.09 · 10−3 −3.257 · 10−3

a2,1 0.712 0.836
a2,0 834.17 781.62

image containing two cubic curves as follows:

f(x, y) = δ(y − a1,3x
3 − a1,2x

2 − a1,1x− a1,0)

+ δ(y − a2,3x
3 − a2,2x

2 − a2,1x− a2,0),
(20)

where a1,3 = −1.948 · 10−6, a1,2 = 3.306 · 10−3, a1,1 =
−0.697, a1,0 = 130, and a2,3 = 1.855 · 10−6, a2,2 = −3.26 ·
10−3, a2,1 = 0.843, a2,0 = 780, which is shown in Fig.
1a. The image size is 1024 × 1024. The modified vari-
able µ-propagation (10) is performed with µ = 0.001251.
The PCPF-HAF is calculated following the guidelines given
in [10]. The S-method of the signal (11) is represented in
Fig. 1b. The estimations of coefficients ak,i, k = 1, 2 and
i = 0, 1, 2, 3, are presented in Table 1. Clearly, the S-method
is outperformed by the PCPF-HAF in terms of accuracy.

The IF estimations obtained using the PCPF-HAF method
(circles) and the S-method (pentagrams) are given in Fig. 1c.
A small region in Fig. 1c is zoomed in to emphasize the dif-
ference between the techniques. The IF estimation obtained
using the S-method is biased, as expected. On the other hand,
the IF estimations based on the PCPF-HAF follow the true IF
values completely.

Since the PHAF performs similarly to the PCPF-HAF, we
have not presented the PHAF-based results.

Example 2: In this example, we compare the S-method and
the PCPF-HAF in estimating polynomial coefficients of a sin-
gle cubic curve corrupted by Gaussian noise ν(x) of standard
deviation σ, i.e.

f(x, y) = δ(y − a3x
3 − a2x

2 − a1x− a0 + ν(x)). (21)

Curve coefficients a3, a2, a1 and a0 are equal to a1,3, a1,2,
a1,1 and a1,0, respectively, from Example 1. Performance has
been evaluated through the mean squared error (MSE) defined
as

MSE = 10 log10

[
1

NMC

NMC∑
k=1

(
atrue − akest

)2]
, (22)

1The parameter µ determines the maximal object velocity in image that
can be estimated [3] and its choice depends on particular application.
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Fig. 2. MSE versus noise deviation σ.

where atrue represents the true coefficient value, akest the es-
timated value in the kth simulation, and NMC is the number
of Monte-Carlo simulations. Here, NMC = 500. The MSE
of the highest two coefficients a3 and a2 is given in Fig. 2,
where σ is varied from 0.2 to 1.5 in steps of 0.1. The same
PCPF-HAF setup as in Example 1 is used, as well as the same
µ. Again, the PCPF-HAF provides more accurate estimates
than the S-method.

5. CONCLUSIONS

The estimation of multiple lines in image using the SLIDE
algorithm is considered. The line parameters are mapped into
the IF of FM signals, whose parameters are, in turn, estimated
using the recently proposed PCPF-HAF method. Simulations
show that the proposed estimator outperforms those based on
TF representations, namely the S-method. Also, the proposed
method works well even if the line to be estimated is cor-
rupted by Gaussian noise.
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[13] P.M. Djurić and S.M. Kay, “Parameter estimation of
chirp signals,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 38, no. 12, pp. 2118–2126,
1990.

[14] S. Peleg and B. Friedlander, “The discrete polynomial-
phase transform,” IEEE Transactions on Signal Pro-
cessing, vol. 43, no. 8, pp. 1901–1914, August 1995.
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