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ABSTRACT

This paper addresses the task of detecting diverse semantic

concepts in videos. Within this context, the Bag Of Vi-

sual Words (BoW) model, inherited from sampled video

keyframes analysis, is among the most popular methods.

However, in the case of image sequences, this model faces

new difficulties such as the added motion information, the

extra computational cost and the increased variability of con-

tent and concepts to handle. Considering this spatio-temporal

context, we propose to extend the BoW model by introduc-

ing video preprocessing strategies with the help of a retina

model, before extracting BoW descriptors. This preprocess-

ing increases the robustness of local features to disturbances

such as noise and lighting variations. Additionally, the retina

model is used to detect potentially salient areas and to con-

struct spatio-temporal descriptors. We experiment with three

state of the art local features, SIFT, SURF and FREAK,

and we evaluate our results on the TRECVid 2012 Semantic

Indexing (SIN) challenge.

Index Terms— Video, classification, retina, saliency, Bag

of Words

1. INTRODUCTION

With the continuous and accelerated increase in size of video

databases (on-line collections grow by thousands of hours

each day), typical interactions such as indexing, browsing or

searching require improved tools to organize the collection.

These tools require an indexing of the collection, but due to

the large amount of data, there is great interest in methods

able to do this automatically. However, users require indexing

with humanly-understandable terms, which is a challenging

task due to the semantic gap: the transition from raw video

data to high-level semantic concepts.

In the case of static image collections, one of the most

popular methods for concept detection is the Bag of visual

Words (BoW) [1] approach. It relies on extracting local vi-

sual features from the image, matching these features with

a codebook of “visual words” and describing the image as a

histogram of the visual words that were found. Supervised

classification is used in the end to make the link between the

BoW histogram and semantic concepts. Each part of this tool

chain can be adjusted to improve classification performance

regarding the application context, from image description to

the final classification stage [2].

However, in the case of large video collections, because

of computational cost, the video description stage of the BoW

tool chain is very similar to the one for still images, thus omit-

ting the added temporal (motion) information. Some spatio-

temporal approaches have then been proposed, such as the

MoSIFT local feature descriptor [3] or point trajectories [4],

but these require significant computational resources. Im-

provements have also been made to take into account the tem-

poral structure of actions, which the BoW model was lacking.

The Actom Sequence Model of [5] was proven efficient in

this respect, but it requires a precise annotation at the training

stage of supervised classifiers.

In parallel, considering the high semantic level expected

by end users, the introduction of visual perception has been

suggested. Saliency maps can weigh the importance of col-

lected visual words, which can improve tasks such as object

recognition [6]. However, the complexity of saliency mod-

eling is an important limitation in the analysis of large video

collections. Other bio-inspired methods such as deep learn-

ing [7] have recently shown impressive results, but the un-

derlying computational cost and architecture still limits their

use.

All in all, when dealing with large video collections

and unconstrained query topics, research challenges such as

TRECVid [8] or MediaEval [9] show that spatio-temporal and

multimodal content description is indeed required. Similarly,

human perception follows the same multimodal philosophy.

For example, the human retina enhances visual signals and

decorrelates spatial and temporal information, which facili-

tates processing by specialized areas in the brain, where data

is analysed, interpreted and fused at different stages.

This paper focuses on visual spatio-temporal content de-

scription by feeding a state of the art BoW approach with

retina preprocessed information. We show that even though

the retina model is a very low-level processing step in the vi-

sual system, it can significantly improve the results of a state



of the art BoW approach, it can help focus on potentially

salient areas and it can process spatio-temporal information

even with classical spatial local features such as SIFT, SURF

or FREAK, while maintaining low computational cost.

We evaluate our approaches on the difficult Semantic In-

dexing (SIN) task of the TRECVid 2012 challenge, which re-

quires detecting 346 diverse semantic concepts in a multitude

of short video fragments (video shots). The rest of the paper

is organized as follows: Sec. 2 describes our improved BoW

toolchain using retinal preprocessing, Sec. 3 describes our ex-

periments and Sec. 4 concludes the paper.

2. MODIFIED BOW TOOLCHAIN

2.1. The human retina model

As described in [10], we preprocess the input video stream

with the human retina model of [11] (available in OpenCV),

before applying the state of the art BoW toolchain. This retina

model is able to remove spatio-temporal high frequency noise

and whiten the image spectrum, thus providing enhanced sig-

nals for the following processing stages. The retina decorre-

lates spatial and temporal information by providing two out-

put video streams:

• the parvocellular channel (parvo) (Fig. 1b and 1f) trans-

mits static color details with reduced spatio-temporal

high frequency noise. Contrast gain control ensures local

adaptation to luminance. Spectral whitening also atten-

uates the mean luminance energy and enforces medium-

frequency spatial components (details).

• the magnocellular channel (magno) (Fig. 1c and 1g) also

benefits from local contrast adaptation and noise removal.

It transmits low-resolution version of transient (moving)

elements.

Based on the magnocellular channel, a low-level detector of

spatio-temporal saliency can highlight areas where potentially

more interesting content is located [10]. This detector has

two phases: a transient phase (when processing starts, lasting

about 5 frames) and a stable state. During the transient phase,

because the retina reacts in a coarse to fine way, large texture

rich areas of high luminance are first selected, as in Fig. 1d,

where static faces from the background are detected along

with the presenter’s face. After a few frames, the response

stabilizes and only transient (moving) areas are selected, such

as the presenter’s face and hands in Fig. 1h. The selected

“blobs” are stable from one image to the next, which enforces

the weight of features collected from such areas in the BoW

histogram.

2.2. Feature collection strategies

Our main contribution relies in preprocessing the input videos

to improve the local feature extraction step. Each of these lo-

cal feature extraction strategies gives rise to its own visual

vocabulary and BoW histogram. We use 5 such strategies,

described in the following. All of them collect local fea-

tures from a regular dense grid, with the same grid step in

all cases. The first two are keyframe based approaches, ex-

tracting features from a single frame of the video shot. The

other 3 consider a temporal window of 20 frames centered on

the keyframe, and features are sampled only from grid points

that fall within spatio-temporally “salient” regions defined by

a binary mask (Fig. 1d and 1h).

The baseline consists in extracting local features in an op-

ponent color space on the original unprocessed keyframe of

the video shot. This approach serves as a reference for evalu-

ating our other 4 strategies.

The retina strategy collects local features in an opponent

color space from the parvocellular-preprocessed keyframe in-

stead of the original keyframe. The goal is to take advantage

of the “cleaner” parvocellular output to collect higher quality

features than the baseline.

Retina masking parvo expands the retina strategy by col-

lecting features in a temporal window of 20 frames centered

on the keyframe. Additionally, the low-level saliency detec-

tor is used to select features that are hopefully more relevant.

During the transient phase of the detector, large spatial fea-

tures are selected, giving information about the general com-

position of the scene, while during the stable state, the contri-

bution of moving features is enforced.

Retina masking magno collects local features from exactly

the same positions and moments as retina masking parvo, but

uses grayscale features from the magnocellular channel in-

stead of color features from the parvocellular one. During the

transient phase of the retina, these magno features constitute

low-resolution data about the general appearance of the image

(Fig. 1c). During the stable state, these features give a coarse

description of contours perpendicular to the motion direction

(Fig. 1g).

The last strategy, multichannel masking, also collects

features at the same locations and moments as the previous

two approaches. However, it employs hybrid local features

by concatenating the SIFT/SURF/FREAK (opponent color

space) signature of the image patch from the parvocellular

channel with the SIFT/SURF/FREAK (grayscale) signature

at the same location but from the magnocellular channel.

During the stable state of the retina, the signature from the

parvo channel encodes spatial appearance, while the signa-

ture from the magno channel encodes the motion direction.

This makes the hybrid local features spatio-temporal.

2.3. Integration in the BoW framework

After preprocessing the video shots with the human retina

model, we collect local features according to the strategies

described above. Feature points are sampled on a dense grid

with a 6 pixel step. 8 scales are used for image patch sizes,

starting from 16x16 pixels, with an increasing scaling factor



(a) input at start (b) parvo at start (c) magno at start (d) mask at start

(e) input at end (f) parvo at end (g) magno at end (h) mask at end

Fig. 1: Effects of parvocellular and magnocellular preprocessing, as well as segmented “blobs” of low-level spatio-temporal

saliency, at the beginning and end of a 20-frame temporal window around the keyframe. The retina is initialized at the beginning

of this window.

of 1.2 between scales.

The rest of the processing chain is the same as for classi-

cal BoW approaches. The collected image patches (local fea-

tures) are described with an image patch descriptor: SIFT [12]

and SURF [12] are based on local histograms of image inten-

sity gradients, while the more recent FREAK [13] constructs

a binary signature by comparing pixel intensities in a retina-

like pattern. All these image patch descriptors have some ro-

bustness to luminance changes, but they can be affected by

noise, which is especially present in darker regions. Fortu-

nately, the parvocellular channel benefits from reduced noise

and improved local contrast.

Afterwards, for each of the 5 feature collection strategies

and for each of the 3 local image patch descriptors, a specific

visual vocabulary is computed, leading to 15 different vocab-

ularies. Each one is extracted from the best kmeans cluster-

ing of 3 trials performed over 4 million video shot keypoints

extracted from a training part of the dataset. With 1024 vi-

sual words, BoW histograms remain compact thus allowing

fast extraction and classification. Finally, video shots are de-

scribed by 15 histograms (the Bag of Words) depicting the

frequencies of appearance of visual words. Histogram com-

putation is performed using the soft-assignment strategy de-

scribed in [14], with the specific beta parameter equal to 10,

which was proven to give better results than hard assignment

(assigning only to the single closest vocabulary word).

The next step is to train and apply a supervised clas-

sifier that will give, for each semantic concept and each

image/video, the likelihood of the concept being present in

the multimedia element. We use the KNN classifier of [15],

which is much faster to compute than SVM classifiers, even

though the latter give better results. We prefer KNN because

it is sufficient for comparing different video descriptors and

it allows conducting more experiments in a shorter time.

The interested reader can refer to [15] for a comparison of

KNN and SVM classifiers, as well as for the effect of some

descriptor optimisation strategies.

In the end, information fusion strategies can be used to

take advantage of the entire set of descriptors that we propose.

3. EXPERIMENTS

3.1. Experimental setup

We perform our experiments on the TRECVid 2012 Seman-

tic Indexing (SIN) development dataset. It contains cca. 200

hours of video divided into cca. 400 000 shots, in which the

presence or absence of 346 diverse semantic concepts needs

to be annotated [8]. The dataset is split in two parts, arbitrar-

ily called 2012x and 2012y, each containing cca. 100 hours

of video in cca. 200 000 shots. The two parts are balanced

to contain similar numbers of true positives for each target

concept. One of these parts is used to extract visual vocabu-

laries and to train supervised classifiers, while the other part

is used to evaluate results. For the evaluation dataset part,

for each concept, a list of max. 2000 shots is to be returned,

ranked according to decreasing likelihoods of containing the

concept. The inferred average precision (infAP) [16], which

is the official performance metric of TRECVid SIN, is used to

evaluate the quality of these lists.

3.2. Individual results

Table 1 details the infAP obtained, averaged over all 346 con-

cepts. Two results are given, one for training on 2012x and

testing on 2012y, and the other for training on 2012y and test-

ing on 2012x. These two results are similar, proving that the

two datasets are balanced and that descriptor behaviours are

stable. The performances might appear low, but these values



Individual descriptors SIFT SURF FREAK

infAp (%) [16] xy yx xy yx xy yx

baseline 8.7 8.5 4.4 4.1 8.3 8.3

retina 9.6 9.9 6.5 6.6 8.6 8.4

retina mask. parvo (P) 9.7 9.7 8.6 8.8 8.9 8.9

retina mask. magno (M) 7.7 7.6 7.1 7.0 4.7 4.8

multichannel mask. 9.0 9.5 8.9 8.7 8.4 8.3

Descriptor fusions

retina mask. P+M early 9.8 9.8 8.9 9.1 8.8 8.8

F1:retina mask. P+M late 10 11 9.9 9.9 9.4 9.3

F2:F1+retina 12 12 11 11 11 11

F3:F1+retina+baseline 13 13 11 11 12 12

F3 SIFT+SURF+FREAK 15(yx) 15(xy)

Table 1: Infered average precisions averaged over the 346 con-

cepts. For each local feature type and each method we train

on 2012x and report results on 2012y (’xy’) and vice-versa

(’yx’) .

are normal considering the reduced number of true positives

and the difficulty of the task [15]. As shown in [15], these

results can be significantly improved with the aid of informa-

tion fusion strategies that exploit the complementarity among

descriptors. Even a simple arithmetic mean of classification

scores coming from different descriptors already provides a

significant boost.

Table 1 allows us to evaluate the gains obtained with the

various proposed approaches compared to the baseline. The

two strategies employing features collected on the parvocel-

lular frame(s), namely retina and retina masking parvo, im-

prove results for all 3 types of local features. The relative

gain is the greatest for SURF features, where performance is

doubled compared to the baseline. The baseline for SURF is

the lowest, but the retina approaches manage to bring it to a

similar level as SIFT of FREAK.

A large part of this gain is due to the image cleaning

and detail enhancement effect provided by the parvocellular

channel. It can be directly observed when comparing the 2

keyframe based approaches, baseline and retina whatever the

local features used. The SURF based BoW has the lowest

baseline and is improved by 48%, while SIFT and FREAK

are respectively improved by 10% and 4%.

Also, we defend the importance of focusing on salient

areas within the considered video shots. Comparing the

keyframe-based retina and the temporal window with saliency

masking retina masking parvo, no improvement is observed

for SIFT which already has high performance with the

retina description. However improvements amount to 3-

6% for FREAK and 32% for SURF. In the end, with the

retina masking parvo strategy, the 3 different local features

SIFT/SURF/FREAK get similar results close to 9% infAP.

With the exception of SURF, the retina masking magno

approach, which collects features from the magnocellular

channel, gives lower results than the baseline on average

over the 346 concepts. Indeed, since this channel only con-

tains low spatial frequencies of temporally-transient signals,

this channel provides a coarse representation that should be

described only at high scales. Nevertheless, compared to

its parvo channel counterpart, it improves performance for

some specific concepts: with SIFT, 74 concepts such as “First

Lady”, “HighWay”, “Ski” benefit from the magnocellular

channel; with SURF, 93 concepts such as “Skating”, “Soccer

Player” or “Indian Person”; and with FREAK, 25 concepts

such as “Primate” and once again “Skating”. A detailed con-

cept per concept analysis shows that very few concepts are

classified similarly with the 3 types of local features. This

announces a complementarity between these 2D features that

will be discussed later on.

3.3. Descriptor fusions

A first type of fusion has already been proposed in the form of

the multichannel masking approach, which uses hybrid parvo-

magno local features, first proposed in [10]. However, in

our experiments, global results are similar to the baseline.

Only SURF descriptors experience a doubling of performance

compared to the baseline, but the retina masking parvo ap-

proach, using parvo features instead of parvo-magno, already

gives almost the same result.

The alternative is to perform fusions at higher levels. An

early fusion is obtained by concatenating the BoW histogram

from retina masking parvo with the one from retina masking

magno before the supervised classification step (this fusion is

denoted retina masking P+M early in Table 1). It achieves

only a 6% improvement compared to the multichannel strat-

egy in the case of FREAK descriptors, and performances re-

main close to using the retina masking parvo approach alone.

Moving on to an even higher fusion level, we perform a

late fusion of the retina masking parvo and retina masking

magno approaches by averaging their supervised classifica-

tion scores (denoted F1: retina masking P+M late in Table 1).

This time, the performance increase is much more significant,

of 12% compared to the multichannel strategy in the case of

FREAK descriptors and similar amounts for SIFT and SURF.

This late fusion also exceeds not only the baseline, but all the

other individual BoW descriptors.

If we now enrich this late fusion scheme, we can exploit

the complementarity of all the presented video description

methods. If we combine the retina classification scores with

the ones from F1: retina masking P+M late, obtaining the

F2: F1+retina approach in Table 1, an additional increase of

18% is obtained compared to F1, in the case of SIFT descrip-

tors. If we also include in this late fusion the baseline ap-

proach, obtaining F3: F1+retina+baseline, we have an addi-

tional 7% increase compared to F2 with SIFT features. This

shows that the keyframe and masking descriptors are comple-



mentary, and that even the baseline descriptor remains impor-

tant because it also deals with high spatial frequencies that are

otherwise cut by the parvocellular channel.

In the end, if we consider the complementarity between

descriptors based on SIFT, SURF and FREAK local features,

fusing the F3 methods allows performance to reach its max-

imum. Compared to the SIFT baseline a gain of 66% is ob-

tained. This simple fusion method opens perspective for en-

hanced results using more specialised fusion methods as the

ones proposed in [15].

4. CONCLUSION

In this paper, we show that a retina model applied before

a state of the art Bag of Words approach improves visual

concept detection. Performance boosts have been observed

on different types of image signatures from SIFT to binary

FREAK. This retinal model also allows a set of very differ-

ent and complementary descriptors to be designed, which can

lead to even better results with the aid of even a simple late

fusion approach. Future work will address an improved retina

model, with less motion blur in the parvocellular channel but

which retains the spatio-temporal low-level saliency property

of the magnocellular channel.
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